Phenotypic Antimicrobial Susceptibility Testing with Deep Learning Video Microscopy

被引:59
作者
Yu, Hui [1 ,2 ]
Jing, Wenwen [2 ]
Iriya, Rafael [2 ,3 ]
Yang, Yunze [2 ]
Syal, Karan [2 ]
Mo, Manni [2 ,3 ]
Grys, Thomas E. [5 ]
Haydel, Shelley E. [6 ,7 ]
Wang, Shaopeng [2 ,3 ]
Tao, Nongjian [2 ,3 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Biomed Engn, Inst Personalized Med, Shanghai 200030, Peoples R China
[2] Arizona State Univ, Biodesign Ctr Biosensors & Bioelect, Tempe, AZ 85287 USA
[3] Nanjing Univ, Sch Chem & Chem Engn, State Key Lab Analyt Chem Life Sci, Nanjing 210093, Jiangsu, Peoples R China
[4] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
[5] Mayo Clin, Dept Lab Med & Pathol, Phoenix, AZ 85054 USA
[6] Arizona State Univ, Biodesign Ctr Immunotherapy Vaccines & Virotherap, Tempe, AZ 85287 USA
[7] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA
关键词
ANTIBIOTIC-RESISTANCE; BACTERIAL-GROWTH; IDENTIFICATION; CAPTURE;
D O I
10.1021/acs.analchem.8b01128
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Timely determination of antimicrobial susceptibility for a bacterial infection enables precision prescription, shortens treatment time, and helps minimize the spread of antibiotic resistant infections. Current antimicrobial susceptibility testing (AST) methods often take several days and thus impede these clinical and health benefits. Here, we present an AST method by imaging freely moving bacterial cells in urine in real time and analyzing the videos with a deep learning algorithm. The deep learning algorithm determines if an antibiotic inhibits a bacterial cell by learning multiple phenotypic features of the cell without the need for defining and quantifying each feature. We apply the method to urinary tract infection, a common infection that affects millions of people, to determine the minimum inhibitory concentration of pathogens from both bacteria spiked urine and clinical infected urine samples for different antibiotics within 30 min and validate the results with the gold standard broth macrodilution method. The deep learning video microscopy-based AST holds great potential to contribute to the solution of increasing drug-resistant infections.
引用
收藏
页码:6314 / 6322
页数:9
相关论文
共 39 条
  • [1] Integrated Biosensor Assay for Rapid Uropathogen Identification and Phenotypic Antimicrobial Susceptibility Testing
    Altobelli, Emanuela
    Mohan, Ruchika
    Mach, Kathleen E.
    Sin, Mandy Lai Yi
    Anikst, Victoria
    Buscarini, Maurizio
    Wong, Pak Kin
    Gau, Vincent
    Banaei, Niaz
    Liao, Joseph C.
    [J]. EUROPEAN UROLOGY FOCUS, 2017, 3 (2-3): : 293 - 299
  • [2] [Anonymous], REV ANTIMICROBIAL RE
  • [3] [Anonymous], 2015, REV ANTIMICROBIAL RE
  • [4] [Anonymous], M07A10 CLSI
  • [5] Antibiotic susceptibility testing in less than 30 min using direct single-cell imaging
    Baltekin, Ozden
    Boucharin, Alexis
    Tano, Eva
    Andersson, Dan I.
    Elf, Johan
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (34) : 9170 - 9175
  • [6] Preventing antibiotic resistance through rapid genotypic identification of bacteria and of their antibiotic resistance genes in the clinical microbiology laboratory
    Bergeron, MG
    Ouellette, M
    [J]. JOURNAL OF CLINICAL MICROBIOLOGY, 1998, 36 (08) : 2169 - 2172
  • [7] Deep Learning in Label-free Cell Classification
    Chen, Claire Lifan
    Mahjoubfar, Ata
    Tai, Li-Chia
    Blaby, Ian K.
    Huang, Allen
    Niazi, Kayvan Reza
    Jalali, Bahram
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [8] Big Data Deep Learning: Challenges and Perspectives
    Chen, Xue-Wen
    Lin, Xiaotong
    [J]. IEEE ACCESS, 2014, 2 : 514 - 525
  • [9] Direct, rapid antimicrobial susceptibility test from positive blood cultures based on microscopic imaging analysis
    Choi, Jungil
    Jeong, Hyun Yong
    Lee, Gi Yoon
    Han, Sangkwon
    Han, Shinhun
    Jin, Bonghwan
    Lim, Taegeun
    Kim, Shin
    Kim, Dong Young
    Kim, Hee Chan
    Kim, Eui-Chong
    Song, Sang Hoon
    Kim, Taek Soo
    Kwon, Sunghoon
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [10] A rapid antimicrobial susceptibility test based on single-cell morphological analysis
    Choi, Jungil
    Yoo, Jungheon
    Lee, Mincheol
    Kim, Eun-Geun
    Lee, Ji Soo
    Lee, Seungok
    Joo, Seik
    Song, Sang Hoon
    Kim, Eui-Chong
    Lee, Jung Chan
    Kim, Hee Chan
    Jung, Yong-Gyun
    Kwon, Sunghoon
    [J]. SCIENCE TRANSLATIONAL MEDICINE, 2014, 6 (267)