Controllable Molecular Modulation of Conductivity in Silicon-Based Devices

被引:47
|
作者
He, Tao [1 ,2 ,3 ,4 ,5 ]
Corley, David A. [1 ,2 ,3 ,4 ,5 ]
Lu, Meng [1 ,2 ,3 ,4 ,5 ]
Di Spigna, Neil Halen [6 ]
He, Jianli [1 ,2 ,3 ,4 ,5 ]
Nackashi, David P. [6 ]
Franzon, Paul D. [6 ]
Tour, James M. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Rice Univ, Dept Chem, Houston, TX 77005 USA
[2] Rice Univ, Dept Comp Sci, Houston, TX 77005 USA
[3] Rice Univ, Dept Mech Engn, Houston, TX 77005 USA
[4] Rice Univ, Dept Mat Sci, Houston, TX 77005 USA
[5] Rice Univ, Smalley Inst Nanoscale Sci & Technol, Houston, TX 77005 USA
[6] N Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA
关键词
THRESHOLD-VOLTAGE; MOSFET; EXTRACTION; CONDUCTANCE; TRANSITION; TRANSISTOR; TRANSPORT; GAAS; SI;
D O I
10.1021/ja9002537
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electronic properties of silicon, such as the conductivity, are largely dependent on the density of the mobile charge carriers, which can be tuned by gating and impurity doping. When the device size scales down to the nanoscale, routine doping becomes problematic due to inhomogeneities. Here we report that a molecular monolayer, covalently grafted-atop a silicon channel, can play a role similar to gating and impurity doping. Charge transfer occurs between the silicon and the molecules upon grafting, which can influence the surface band bending, and makes the molecules act as donors or acceptors. The partly charged end-groups of the grafted molecular layer may act as a top gate. The doping- and gating-like effects together lead to the observed controllable modulation of conductivity in pseudometal-oxide-semiconductor field-effect transistors (pseudo-MOSFETs). The molecular effects can even penetrate through a 4.92-mu m thick silicon layer. Our results offer a paradigm for controlling electronic characteristics in nanodevices at the future diminutive technology nodes.
引用
收藏
页码:10023 / 10030
页数:8
相关论文
共 50 条
  • [1] Controlled modulation of conductance in silicon devices by molecular monolayers
    He, Tao
    He, Jianli
    Lu, Meng
    Chen, Bo
    Pang, Harry
    Reus, William F.
    Nolte, Whitney M.
    Nackashi, David P.
    Franzon, Paul D.
    Tour, James M.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (45) : 14537 - 14541
  • [2] Engineering the Electron Transport of Silicon-Based Molecular Electronic Devices via Molecular Dipoles
    Gergel-Hackett, Nadine
    Aguilar, Izath
    Richter, Curt A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (49) : 21708 - 21714
  • [3] Silicon-Based Molecular Switch Junctions
    Nozaki, Daijiro
    Cuniberti, Gianaurelio
    NANO RESEARCH, 2009, 2 (08) : 648 - 659
  • [4] Sublimation molecular beam epitaxy of silicon-based structures
    Kuznetsov, V. P.
    Krasil'nik, Z. F.
    SEMICONDUCTORS, 2010, 44 (03) : 396 - 400
  • [5] Simulated thermal conductivity of silicon-based random multilayer thin films
    Frachioni, Anthony
    White, B. E., Jr.
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (01)
  • [6] Computational comparison of conductivity and mobility models for silicon nanowire devices
    Frey, M.
    Esposito, A.
    Schenk, A.
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (08)
  • [7] Design of silicon-based fractal antennas
    Ghaffar, Farhan A.
    Shamim, Atif
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2013, 55 (01) : 180 - 186
  • [8] TRAPPING ASPECTS IN SILICON-BASED NANOSTRUCTURES
    Ciurea, Magdalena Lidia
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2011, 12 (04): : 315 - 323
  • [9] Formation of Silicon-Based Molecular Electronic Structures Using Flip-Chip Lamination
    Coll, Mariona
    Miller, Lauren H.
    Richter, Lee J.
    Hines, Daniel R.
    Jurchescu, Oana D.
    Gergel-Hackett, Nadine
    Richter, Curt A.
    Hacker, Christina A.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (34) : 12451 - 12457
  • [10] Enhancing the conductivity of molecular electronic devices
    Stuyver, Thijs
    Fias, Stijn
    De Proft, Frank
    Geerlings, Paul
    Tsuji, Yuta
    Hoffmann, Roald
    JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (09)