Fast Correlation Method for Partial Fourier and Hadamard Sensing Matrices in Matching Pursuit Algorithms

被引:2
作者
Kim, Kee-Hoon [1 ]
Park, Hosung [1 ]
Hong, Seokbeom [2 ]
No, Jong-Seon [1 ]
机构
[1] Seoul Natl Univ, Dept Elect Engn & Comp Sci, INMC, Seoul 151744, South Korea
[2] Samsung Elect Co Ltd, Hwasung 445701, Gyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
compressed sensing; Fourier; Hadamard; low-complexity; matching pursuit; sensing matrix;
D O I
10.1587/transfun.E97.A.1674
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
There have been many matching pursuit algorithms (MPAs) which handle the sparse signal recovery problem, called compressed sensing (CS). In the MPAs, the correlation step makes a dominant computational complexity. In this paper, we propose a new fast correlation method for the MPA when we use partial Fourier sensing matrices and partial Hadamard sensing matrices which are widely used as the sensing matrix in CS. The proposed correlation method can be applied to almost all MPAs without causing any degradation of their recovery performance. Also, the proposed correlation method can reduce the computational complexity of the MPAs well even though there are restrictions depending on a used MPA and parameters.
引用
收藏
页码:1674 / 1679
页数:6
相关论文
共 13 条
  • [1] Compressed Channel Sensing: A New Approach to Estimating Sparse Multipath Channels
    Bajwa, Waheed U.
    Haupt, Jarvis
    Sayeed, Akbar M.
    Nowak, Robert
    [J]. PROCEEDINGS OF THE IEEE, 2010, 98 (06) : 1058 - 1076
  • [2] Construction of a Large Class of Deterministic Sensing Matrices That Satisfy a Statistical Isometry Property
    Calderbank, Robert
    Howard, Stephen
    Jafarpour, Sina
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2010, 4 (02) : 358 - 374
  • [3] Decoding by linear programming
    Candes, EJ
    Tao, T
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) : 4203 - 4215
  • [4] Subspace Pursuit for Compressive Sensing Signal Reconstruction
    Dai, Wei
    Milenkovic, Olgica
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (05) : 2230 - 2249
  • [5] A New Performance Measure Using k-Set Correlation for Compressed Sensing Matrices
    Hong, Seokbeom
    Park, Hosung
    Shin, Beomkyu
    No, Jong-Seon
    Chung, Habong
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2012, 19 (03) : 143 - 146
  • [6] Backtracking-Based Matching Pursuit Method for Sparse Signal Reconstruction
    Huang, Honglin
    Makur, Anamitra
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2011, 18 (07) : 391 - 394
  • [7] Compressed sensing MRI
    Lustig, Michael
    Donoho, David L.
    Santos, Juan M.
    Pauly, John M.
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (02) : 72 - 82
  • [8] Sparsity and Block-Sparsity Concepts Based Wideband Spectrum Sensing
    Najafabadi, Davood Mardani
    Sahaf, Masoud Reza Aghabozorgi
    Tadaion, Ali Akbar
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2013, E96A (02) : 573 - 583
  • [9] CoSaMP: Iterative signal recovery from incomplete and inaccurate samples
    Needell, D.
    Tropp, J. A.
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2009, 26 (03) : 301 - 321
  • [10] Signal Recovery From Incomplete and Inaccurate Measurements Via Regularized Orthogonal Matching Pursuit
    Needell, Deanna
    Vershynin, Roman
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2010, 4 (02) : 310 - 316