Advanced anodes composed of graphene encapsulated nano-silicon in a carbon nanotube network

被引:36
作者
Ding, Xuli [1 ]
Wang, Haifeng [1 ]
Liu, Xiaoxiao [2 ]
Gao, Zhonghui [1 ]
Huang, Yangyang [2 ]
Lv, Danhui [3 ]
He, Pengfei [4 ]
Huang, Yunhui [1 ,2 ]
机构
[1] Tongji Univ, Sch Mat Sci & Engn, Collaborat Innovat Ctr Intelligent New Energy Veh, Shanghai 201804, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, Wuhan 430074, Hunan, Peoples R China
[3] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
[4] Tongji Univ, Sch Aerosp Engn & Appl Mech, Shanghai 200092, Peoples R China
关键词
LITHIUM-ION BATTERIES; ELECTROCHEMICAL LITHIATION; AMORPHOUS-SILICON; GROWTH-MECHANISM; PERFORMANCE; CAPACITY; STORAGE; LI; SI; PARTICLES;
D O I
10.1039/c7ra01877k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-capacity silicon-based anode materials with high conductivity to promote electron/ion transfer and excellent elasticity to alleviate volume expansion during repeated lithiation/delithiation process are highly desirable for next-generation lithium-ion batteries. Herein, we developed a facile in situ synthesis method based on chemical vapor deposition to fabricate Si-based nanocomposites integrated with interlinked graphene (Gra) and carbon nanotube (CNT). With melt-assembly nanosized Cu as the catalyst, hierarchical three-dimensional conductive Gra/CNT networks were in situ grown onto Si nanoparticles (SNPs) to achieve the Si@Gra@CNT composite. Such a hierarchical structure combines multiple advantages from SNPs with a super high capacity, Gra/CNT framework with continuous electrical conductivity, and void space for tolerance of Si volume expansion. Moreover, the SNPs were conformally encapsulated by few-layer Gra (fGra), which can protect the SNPs from direct exposure to electrolyte, resulting in a stable solid-electrolyte interface. As an anode material for Li-ion battery, the as-prepared Si@Gra@CNT composite exhibited a high initial specific capacity of 1197 mA h g(-1) at a current density 2.0 A g(-1) and similar to 82% capacity retention over 1200 cycles, which was much better than those of Si@Gra and Si@CNT composites. The mechanism for the improved electrochemical performance was further analysed from the aspect of the synergetic effect arising from the construction components.
引用
收藏
页码:15694 / 15701
页数:8
相关论文
共 52 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]  
Barsoukov E, 2005, IMPEDANCE SPECTROSCOPY: THEORY, EXPERIMENT, AND APPLICATIONS, 2ND EDITION, pXII
[3]   Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage [J].
Bonaccorso, Francesco ;
Colombo, Luigi ;
Yu, Guihua ;
Stoller, Meryl ;
Tozzini, Valentina ;
Ferrari, Andrea C. ;
Ruoff, Rodney S. ;
Pellegrini, Vittorio .
SCIENCE, 2015, 347 (6217)
[4]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[5]   Multilayered Si Nanoparticle/Reduced Graphene Oxide Hybrid as a High-Performance Lithium-Ion Battery Anode [J].
Chang, Jingbo ;
Huang, Xingkang ;
Zhou, Guihua ;
Cui, Shumao ;
Hallac, Peter B. ;
Jiang, Junwei ;
Hurley, Patrick T. ;
Chen, Junhong .
ADVANCED MATERIALS, 2014, 26 (05) :758-764
[6]   Carbon nanotubule membranes for electrochemical energy storage and production [J].
Che, GL ;
Lakshmi, BB ;
Fisher, ER ;
Martin, CR .
NATURE, 1998, 393 (6683) :346-349
[7]   Large-volume-change electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers [J].
Chen, ZH ;
Christensen, L ;
Dahn, JR .
ELECTROCHEMISTRY COMMUNICATIONS, 2003, 5 (11) :919-923
[8]  
de Levie R., 1964, Electrochim. Acta., V9, P1231, DOI DOI 10.1016/0013-4686(64)85015-5
[9]   Enhanced electrochemical performance promoted by monolayer graphene and void space in silicon composite anode materials [J].
Ding, Xuli ;
Liu, XiaoXiao ;
Huang, Yangyang ;
Zhang, Xuefu ;
Zhao, Qianjin ;
Xiang, Xinghua ;
Li, Guolong ;
He, Pengfei ;
Wen, Zhaoyin ;
Li, Ju ;
Huang, Yunhui .
NANO ENERGY, 2016, 27 :647-657
[10]   Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy [J].
Dresselhaus, Mildred S. ;
Jorio, Ado ;
Hofmann, Mario ;
Dresselhaus, Gene ;
Saito, Riichiro .
NANO LETTERS, 2010, 10 (03) :751-758