DenseHybrid: Hybrid Anomaly Detection for Dense Open-Set Recognition

被引:22
|
作者
Grcic, Matej [1 ]
Bevandic, Petra [1 ]
Segvic, Sinisa [1 ]
机构
[1] Univ Zagreb, Fac Elect Engn & Comp, Unska 3, Zagreb 10000, Croatia
来源
关键词
Dense anomaly detection; Dense open-set recognition; Out-of-distribution detection; Semantic segmentation;
D O I
10.1007/978-3-031-19806-9_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Anomaly detection can be conceived either through generative modelling of regular training data or by discriminating with respect to negative training data. These two approaches exhibit different failure modes. Consequently, hybrid algorithms present an attractive research goal. Unfortunately, dense anomaly detection requires translational equivariance and very large input resolutions. These requirements disqualify all previous hybrid approaches to the best of our knowledge. We therefore design a novel hybrid algorithm based on reinterpreting discriminative logits as a logarithm of the unnormalized joint distribution (p) over cap (x, y). Our model builds on a shared convolutional representation from which we recover three dense predictions: i) the closed-set class posterior P(y| x), ii) the dataset posterior P(d(in) | x), iii) unnormalized data likelihood (p) over cap (x). The latter two predictions are trained both on the standard training data and on a generic negative dataset. We blend these two predictions into a hybrid anomaly score which allows dense open-set recognition on large natural images. We carefully design a custom loss for the data likelihood in order to avoid backpropagation through the untractable normalizing constant Z(theta). Experiments evaluate our contributions on standard dense anomaly detection benchmarks as well as in terms of open-mIoU - a novel metric for dense open-set performance. Our submissions achieve state-of-the-art performance despite neglectable computational overhead over the standard semantic segmentation baseline. Official implementation: https://github.com/matejgrcic/DenseHybrid
引用
收藏
页码:500 / 517
页数:18
相关论文
共 50 条
  • [31] Leveraging Attribute Knowledge for Open-set Action Recognition
    Yang, Kaixiang
    Gao, Junyu
    Feng, Yangbo
    Xu, Changsheng
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 762 - 767
  • [32] iCausalOSR: invertible Causal Disentanglement for Open-set Recognition
    Yang, Fenglei
    Li, Baomin
    Han, Jingling
    PATTERN RECOGNITION, 2024, 149
  • [33] IMPROVING OPEN-SET RECOGNITION WITH BAYESIAN METRIC LEARNING
    Chen, Tong
    Feng, Guanchao
    Djuric, Petar M.
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 6185 - 6189
  • [34] Classification-Reconstruction Learning for Open-Set Recognition
    Yoshihashi, Ryota
    Shao, Wen
    Kawakami, Rei
    You, Shaodi
    Iida, Makoto
    Naemura, Takeshi
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 4011 - 4020
  • [35] Open-Set Plankton Recognition Using Similarity Learning
    Mohamed, Ola Badreldeen Bdawy
    Eerola, Thomas
    Kraft, Kaisa
    Lensu, Lasse
    Kalviainen, Heikki
    ADVANCES IN VISUAL COMPUTING, ISVC 2022, PT I, 2022, 13598 : 174 - 183
  • [36] Extending Face Identification to Open-Set Face Recognition
    dos Santos, Cassio E., Jr.
    Schwartz, William Robson
    2014 27TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2014, : 188 - 195
  • [37] Open-Set Named Entity Recognition: A Preliminary Study
    Impedovo, Angelo
    Rizzo, Giuseppe
    Di Mauro, Antonio
    DISCOVERY SCIENCE, DS 2024, PT I, 2025, 15243 : 116 - 131
  • [38] Open-set iris recognition based on deep learning
    Sun, Jie
    Zhao, Shipeng
    Miao, Sheng
    Wang, Xuan
    Yu, Yanan
    IET IMAGE PROCESSING, 2022, 16 (09) : 2361 - 2372
  • [39] Learning multiple gaussian prototypes for open-set recognition
    Liu, Jiaming
    Tian, Jun
    Han, Wei
    Qin, Zhili
    Fan, Yulu
    Shao, Junming
    INFORMATION SCIENCES, 2023, 626 : 738 - 753
  • [40] OPEN-SET RECOGNITION WITH GRADIENT-BASED REPRESENTATIONS
    Lee, Jinsol
    AlRegib, Ghassan
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 469 - 473