CHARACTERISTIC CLASSES FOR RIEMANNIAN FOLIATIONS

被引:2
作者
Hurder, Steven [1 ]
机构
[1] Univ Illinois, Dept Math, Chicago, IL 60607 USA
来源
DIFFERENTIAL GEOMETRY | 2009年
关键词
Riemannian foliation; characteristic classes; secondary classes; Chern-Simons classes; GEOMETRIC INVARIANTS; SECONDARY CLASSES; OPEN MANIFOLDS; BUNDLES;
D O I
10.1142/9789814261173_0002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to both survey and offer some new results oil the non-triviality of the characteristic classes of Riemannian foliations. We give examples where the primary Pontrjagin classes are all linearly independent. The independence of the secondary classes is also discussed, along with their total variation. Finally, we give a negative solution of a. conjecture that the map of classifying spaces F R Gamma(q) - F Gamma(q) is trivial for codimension q > 1.
引用
收藏
页码:11 / 35
页数:25
相关论文
共 57 条
[1]  
[Anonymous], 1982, Indag. Math.
[2]  
[Anonymous], 1974, ANN MATH STUDIES
[3]  
[Anonymous], 2003, Cambridge Stud. Adv. Math., DOI DOI 10.1017/CBO9780511615450
[4]   ON FRAMINGS OF 3-MANIFOLDS [J].
ATIYAH, M .
TOPOLOGY, 1990, 29 (01) :1-7
[5]  
BOTT R, 1967, MICH MATH J, V14, P231
[6]  
Bott R., 1970, P S PURE MATH, V16, P127
[7]  
Bott Raoul., 1972, TOPOLOGY, V11, P141
[8]   RIEMANNIAN FOLIATIONS WITH POLYNOMIAL-GROWTH [J].
CARRIERE, Y .
COMMENTARII MATHEMATICI HELVETICI, 1988, 63 (01) :1-20
[9]  
CHEEGER J, 1985, LECT NOTES MATH, V1167, P50
[10]  
Chern S. S., 1979, Complex manifolds without potential theoryM, Vsecond