Taming the Master: SWI/SNF chromatin remodeller as a therapeutic target in cancer

被引:1
作者
Bashyam, Murali Dharan [1 ]
Animireddy, Srinivas [1 ,2 ]
Bala, Pratyusha [1 ,2 ]
机构
[1] Ctr DNA Fingerprinting & Diagnost, Lab Mol Oncol, Inner Ring Rd, Hyderabad 500039, India
[2] Manipal Acad Higher Educ, Grad Studies, Manipal 576104, Karnataka, India
来源
CURRENT SCIENCE | 2019年 / 116卷 / 10期
关键词
ARID1A; chromatin remodeller; SWI/SNF; therapeutic targeting; CELL LUNG-CANCER; LOSS-OF-FUNCTION; TUMOR-SUPPRESSOR; BREAST-CANCER; BAF COMPLEXES; MUTATIONS; SUBUNIT; EXPRESSION; GENE; BRG1;
D O I
10.18520/cs/v116/i10/1653-1665
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Eukaryotic cells use histone modifiers and chromatin remodellers to facilitate protein DNA interactions in the nucleus; an important requisite for regulating several cardinal nuclear processes including transcription, replication, DNA repair and recombination, etc. The SWI/SNF complex is the most well-studied chromatin remodeller and is conserved from yeast to mammals. The complex is recruited to specific DNA sites, where it uses energy from ATP hydrolysis to catalyse nucleosome sliding or histone eviction from DNA. Mutational inactivation of SWI/SNF components has been identified in neurological syndromes and in several cancers. Recent deep sequencing studies have revealed a SWI/SNF mutation frequency of 20% in cancer genomes. In addition to mutations in tumour samples, extensive studies on cell lines and animal models have revealed tumour suppressive features for many individual SWI/SNF components. Thus, components of the complex are classified as tumour suppressors. Interestingly, however, majority of mutations cause incomplete inactivation of the complex, leaving behind a 'residual' complex that can be targeted for therapy. In addition, characterization of multiple roles of SWI/SNF components has revealed several therapeutic options. The current review summarizes the multi-faceted therapeutic opportunities for tumour bearing mutations in genes, encoding SWI/SNF components.
引用
收藏
页码:1653 / 1665
页数:13
相关论文
共 146 条
  • [1] Brg1 modulates enhancer activation in mesoderm lineage commitment
    Alexander, Jeffrey M.
    Hota, Swetansu K.
    He, Daniel
    Thomas, Sean
    Ho, Lena
    Pennacchio, Len A.
    Bruneau, Benoit G.
    [J]. DEVELOPMENT, 2015, 142 (08): : 1418 - 1430
  • [2] Glioma tumor suppressor candidate region gene 1 (GLTSCR1) and its paralog GLTSCR1-like form SWI/SNF chromatin remodeling subcomplexes
    Alpsoy, Aktan
    Dykhuizen, Emily C.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2018, 293 (11) : 3892 - 3903
  • [3] The SWI/SNF chromatin remodelling complex is required for maintenance of lineage specific enhancers
    Alver, Burak H.
    Kim, Kimberly H.
    Lu, Ping
    Wang, Xiaofeng
    Manchester, Haley E.
    Wang, Weishan
    Haswell, Jeffrey R.
    Park, Peter J.
    Roberts, Charles W. M.
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [4] mSWI/SNF (BAF) Complexes Are Indispensable for the Neurogenesis and Development of Embryonic Olfactory Epithelium
    Bachmann, Christina
    Huong Nguyen
    Rosenbusch, Joachim
    Linh Pham
    Rabe, Tamara
    Patwa, Megha
    Sokpor, Godwin
    Seong, Rho H.
    Ashery-Padan, Ruth
    Mansouri, Ahmed
    Stoykova, Anastassia
    Staiger, Jochen F.
    Tran Tuoc
    [J]. PLOS GENETICS, 2016, 12 (09):
  • [5] A Balanced Translocation t(6;14)(q25.3;q13.2) Leading to Reciprocal Fusion Transcripts in a Patient with Intellectual Disability and Agenesis of Corpus Callosum
    Backx, L.
    Seuntjens, E.
    Devriendt, K.
    Vermeesch, J.
    Van Esch, H.
    [J]. CYTOGENETIC AND GENOME RESEARCH, 2011, 132 (03) : 135 - 143
  • [6] Identifying candidate genes for 2p15p16.1 microdeletion syndrome using clinical, genomic, and functional analysis
    Bagheri, Hani
    Badduke, Chansonette
    Qiao, Ying
    Colnaghi, Rita
    Abramowicz, Iga
    Alcantara, Diana
    Dunham, Christopher
    Wen, Jiadi
    Wildin, Robert S.
    Nowaczyk, Malgorzata J. M.
    Eichmeyer, Jennifer
    Lehman, Anna
    Maranda, Bruno
    Martell, Sally
    Shan, Xianghong
    Lewis, Suzanne M. E.
    O'Driscoll, Mark
    Gregory-Evans, Cheryl Y.
    Rajcan-Separovic, Evica
    [J]. JCI INSIGHT, 2016, 1 (03):
  • [7] Aberrant BAF57 Signaling Facilitates Prometastatic Phenotypes
    Balasubramaniam, Sucharitha
    Comstock, Clay E. S.
    Ertel, Adam
    Jeong, Kwang Won
    Stallcup, Michael R.
    Addya, Sankar
    McCue, Peter A.
    Ostrander, William F., Jr.
    Augello, Michael A.
    Knudsen, Karen E.
    [J]. CLINICAL CANCER RESEARCH, 2013, 19 (10) : 2657 - 2667
  • [8] ARID1A mutation sensitizes most ovarian clear cell carcinomas to BET inhibitors
    Berns, Katrien
    Caumanns, Joseph J.
    Hijmans, E. Marielle
    Gennissen, Annemiek M. C.
    Severson, Tesa M.
    Evers, Bastiaan
    Wisman, G. Bea A.
    Meersma, Gert Jan
    Lieftink, Cor
    Beijersbergen, Roderick L.
    Itamochi, Hiroaki
    van der Zee, Ate G. J.
    de Jong, Steven
    Bernards, Rene
    [J]. ONCOGENE, 2018, 37 (33) : 4611 - 4625
  • [9] Re-expression of hSNF5/INI1/BAF47 in pediatric tumor cells leads to G1 arrest associated with induction of p16ink4a and activation of RB
    Betz, BL
    Strobeck, MW
    Reisman, DN
    Knudsen, ES
    Weissman, BE
    [J]. ONCOGENE, 2002, 21 (34) : 5193 - 5203
  • [10] Biegel JA, 1999, CANCER RES, V59, P74