An Angle-Based Bi-Objective Evolutionary Algorithm for Many-Objective Optimization

被引:1
作者
Yang, Feng [1 ,3 ]
Wang, Shenwen [1 ,3 ]
Zhang, Jiaxing [1 ,3 ]
Gao, Na [1 ,3 ]
Qu, Jun-Feng [2 ]
机构
[1] Hebei GEO Univ, Sch Informat Engn, Shijiazhuang 050031, Hebei, Peoples R China
[2] Hubei Univ Arts & Sci, Sch Comp Engn, Xiangyang 441053, Peoples R China
[3] Hebei GEO Univ, Lab Artificial Intelligence & Machine Learning, Shijiazhuang 050031, Hebei, Peoples R China
关键词
Estimation; Optimization; Convergence; Evolutionary computation; Diversity methods; Sociology; Statistics; Many-objective optimization; evolutionary algorithm; convergence; diversity; bi-objective; OPTIMALITY; SELECTION;
D O I
10.1109/ACCESS.2020.3032681
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
One of the main difficulties in solving many-objective optimization is the lack of selection pressure. For an optimization problem, its main purpose is to obtain a nondominated solution set with better convergence and diversity. In this paper, two estimation methods are proposed to convert a many-objective optimization problem into a simple bi-objective optimization problem, that is, the convergence and diversity estimation methods, so as to greatly improve the probability of certain dominance relation between solutions, and then increase the selection pressure. Based on the proposed estimation methods, a new many-objective evolutionary algorithm, termed ABOEA, is proposed. In the convergence estimation method, we use a modified ASF function to solve the performance degradation of the traditional norm distance on the irregular Pareto front. In the diversity estimation method, we innovatively propose a diversity estimation method based on the angle between solutions. Empirical experimental results demonstrate that the proposed algorithm shows its competitiveness against the state-of-art algorithms in solving many-objective optimization problems. Two estimation methods proposed in this paper can greatly improve the performance of algorithms in solving many-objective optimization problems.
引用
收藏
页码:194015 / 194026
页数:12
相关论文
共 50 条
  • [21] A New Hypervolume-Based Evolutionary Algorithm for Many-Objective Optimization
    Shang, Ke
    Ishibuchi, Hisao
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2020, 24 (05) : 839 - 852
  • [22] A Grid-Based Evolutionary Algorithm for Many-Objective Optimization
    Yang, Shengxiang
    Li, Miqing
    Liu, Xiaohui
    Zheng, Jinhua
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2013, 17 (05) : 721 - 736
  • [23] A Many-Objective Evolutionary Algorithm With Pareto-Adaptive Reference Points
    Xiang, Yi
    Zhou, Yuren
    Yang, Xiaowei
    Huang, Han
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2020, 24 (01) : 99 - 113
  • [24] An Evolutionary Algorithm Based on Minkowski Distance for Many-Objective Optimization
    Xu, Hang
    Zeng, Wenhua
    Zeng, Xiangxiang
    Yen, Gary G.
    IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (11) : 3968 - 3979
  • [25] A Two-Stage Evolutionary Algorithm With Balanced Convergence and Diversity for Many-Objective Optimization
    Ming, Fei
    Gong, Wenyin
    Wang, Ling
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (10): : 6222 - 6234
  • [26] Evolutionary many-objective optimization algorithm based on angle and clustering
    Xiong, Zhijian
    Yang, Jingming
    Hu, Ziyu
    Zhao, Zhiwei
    Wang, Xiaojing
    APPLIED INTELLIGENCE, 2021, 51 (04) : 2045 - 2062
  • [27] A region search evolutionary algorithm for many-objective optimization
    Liu, Yongqi
    Qin, Hui
    Zhang, Zhendong
    Yao, Liqiang
    Wang, Chao
    Mo, Li
    Ouyang, Shuo
    Li, Jie
    INFORMATION SCIENCES, 2019, 488 : 19 - 40
  • [28] Many-objective evolutionary algorithm based on relative non-dominance matrix
    Zhang, Maoqing
    Wang, Lei
    Guo, Weian
    Li, Wuzhao
    Li, Dongyang
    Hu, Bo
    Wu, Qidi
    INFORMATION SCIENCES, 2021, 547 : 963 - 983
  • [29] An angle based constrained many-objective evolutionary algorithm
    Xiang, Yi
    Peng, Jing
    Zhou, Yuren
    Li, Miqing
    Chen, Zefeng
    APPLIED INTELLIGENCE, 2017, 47 (03) : 705 - 720
  • [30] An effective and efficient evolutionary algorithm for many-objective optimization
    Xue, Yani
    Li, Miqing
    Liu, Xiaohui
    INFORMATION SCIENCES, 2022, 617 : 211 - 233