Low cost a posteriori error estimators for an augmented mixed FEM in linear elasticity

被引:9
|
作者
Barrios, Tomas P. [1 ]
Behrens, Edwin M. [2 ]
Gonzalez, Maria [3 ,4 ]
机构
[1] Univ Catolica Santisima Concepcion, Dept Matemat & Fis Aplicadas, Concepcion, Chile
[2] Univ Catolica Santisima Concepcion, Dept Ingn Civil, Concepcion, Chile
[3] Univ A Coruna, Dept Matemat, La Coruna, Spain
[4] Basque Ctr Appl Math, Bilbao 48009, Spain
关键词
Linear elasticity; Mixed finite element method; Stabilization; A posteriori error estimates; FINITE-ELEMENT-METHOD;
D O I
10.1016/j.apnum.2014.05.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an augmented mixed finite element method applied to the linear elasticity problem and derive a posteriori error estimators that are simpler and easier to implement than the ones available in the literature. In the case of homogeneous Dirichlet boundary conditions, the new a posteriori error estimator is reliable and locally efficient, whereas for non-homogeneous Dirichlet boundary conditions, we derive an a posteriori error estimator that is reliable and satisfies a quasi-efficiency bound. Numerical experiments illustrate the performance of the corresponding adaptive algorithms and support the theoretical results. (C) 2014 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:46 / 65
页数:20
相关论文
共 50 条
  • [1] A posteriori error estimators for mixed finite element methods in linear elasticity
    Marco Lonsing
    Rüdiger Verfürth
    Numerische Mathematik, 2004, 97 : 757 - 778
  • [2] A posteriori error estimators for mixed finite element methods in linear elasticity
    Lonsing, M
    Verfürth, R
    NUMERISCHE MATHEMATIK, 2004, 97 (04) : 757 - 778
  • [3] A posteriori error analysis of an augmented mixed formulation in linear elasticity with mixed and Dirichlet boundary conditions
    Barrios, Tomas P.
    Behrens, Edwin M.
    Gonzalez, Maria
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (1-4) : 101 - 113
  • [4] A POSTERIORI ERROR ANALYSIS OF AN AUGMENTED DUAL-MIXED METHOD IN LINEAR ELASTICITY WITH MIXED BOUNDARY CONDITIONS
    Barrios, Tomas P.
    Behrens, Edwin M.
    Gonzalez, Maria
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2019, 16 (05) : 804 - 824
  • [5] Robust a posteriori error estimators for mixed approximation of nearly incompressible elasticity
    Khan, Arbaz
    Powell, Catherine E.
    Silvester, David J.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2019, 119 (01) : 18 - 37
  • [6] A residual based a posteriori error estimator for an augmented mixed finite element method in linear elasticity
    Barrios, Tomas P.
    Gatica, Gabriel N.
    Gonzalez, Maria
    Heuer, Norbert
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2006, 40 (05): : 843 - 869
  • [7] Residual a posteriori error estimators for contact problems in elasticity
    Hild, Patrick
    Nicaise, Serge
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2007, 41 (05): : 897 - 923
  • [8] A priori and a posteriori error analyses of a pseudostress-based mixed formulation for linear elasticity
    Gatica, Gabriel N.
    Gatica, Luis F.
    Sequeira, Filander A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (02) : 585 - 614
  • [9] A Posteriori Analysis for a Mixed FEM Discretization of the Linear Elasticity Spectral Problem
    Felipe Lepe
    Gonzalo Rivera
    Jesus Vellojin
    Journal of Scientific Computing, 2022, 93
  • [10] A Posteriori Analysis for a Mixed FEM Discretization of the Linear Elasticity Spectral Problem
    Lepe, Felipe
    Rivera, Gonzalo
    Vellojin, Jesus
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 93 (01)