Low cost a posteriori error estimators for an augmented mixed FEM in linear elasticity

被引:9
作者
Barrios, Tomas P. [1 ]
Behrens, Edwin M. [2 ]
Gonzalez, Maria [3 ,4 ]
机构
[1] Univ Catolica Santisima Concepcion, Dept Matemat & Fis Aplicadas, Concepcion, Chile
[2] Univ Catolica Santisima Concepcion, Dept Ingn Civil, Concepcion, Chile
[3] Univ A Coruna, Dept Matemat, La Coruna, Spain
[4] Basque Ctr Appl Math, Bilbao 48009, Spain
关键词
Linear elasticity; Mixed finite element method; Stabilization; A posteriori error estimates; FINITE-ELEMENT-METHOD;
D O I
10.1016/j.apnum.2014.05.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an augmented mixed finite element method applied to the linear elasticity problem and derive a posteriori error estimators that are simpler and easier to implement than the ones available in the literature. In the case of homogeneous Dirichlet boundary conditions, the new a posteriori error estimator is reliable and locally efficient, whereas for non-homogeneous Dirichlet boundary conditions, we derive an a posteriori error estimator that is reliable and satisfies a quasi-efficiency bound. Numerical experiments illustrate the performance of the corresponding adaptive algorithms and support the theoretical results. (C) 2014 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:46 / 65
页数:20
相关论文
共 15 条
[1]   ON THE ASYMPTOTIC CONVERGENCE OF COLLOCATION METHODS [J].
ARNOLD, DN ;
WENDLAND, WL .
MATHEMATICS OF COMPUTATION, 1983, 41 (164) :349-381
[2]   An augmented mixed finite element method with Lagrange multipliers: A priori and a posteriori error analyses [J].
Barrios, Tomas P. ;
Gatica, Gabriel N. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 200 (02) :653-676
[3]   A residual based a posteriori error estimator for an augmented mixed finite element method in linear elasticity [J].
Barrios, Tomas P. ;
Gatica, Gabriel N. ;
Gonzalez, Maria ;
Heuer, Norbert .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2006, 40 (05) :843-869
[4]   A posteriori error analysis of an augmented mixed formulation in linear elasticity with mixed and Dirichlet boundary conditions [J].
Barrios, Tomas P. ;
Behrens, Edwin M. ;
Gonzalez, Maria .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (1-4) :101-113
[5]   ERROR INDICATORS FOR MIXED FINITE-ELEMENTS IN 2-DIMENSIONAL LINEAR ELASTICITY [J].
BRAESS, D ;
KLAAS, O ;
NIEKAMP, R ;
STEIN, E ;
WOBSCHAL, F .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1995, 127 (1-4) :345-356
[6]   A posteriori dual-mixed adaptive finite element error control for Lame and Stokes equations [J].
Carstensen, C ;
Causin, P ;
Sacco, R .
NUMERISCHE MATHEMATIK, 2005, 101 (02) :309-332
[7]   A posteriori error estimates for mixed FEM in elasticity [J].
Carstensen, C ;
Dolzmann, G .
NUMERISCHE MATHEMATIK, 1998, 81 (02) :187-209
[8]   Locking-free adaptive mixed finite element methods in linear elasticity [J].
Carstensen, C ;
Dolzmann, G ;
Funken, SA ;
Helm, DS .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 190 (13-14) :1701-1718
[9]   An a posteriori error estimate for a first-kind integral equation [J].
Carstensen, C .
MATHEMATICS OF COMPUTATION, 1997, 66 (217) :139-155
[10]  
Gatica GN, 2007, ELECTRON T NUMER ANA, V26, P421