Microstructure models for composites with imperfect interface via the periodic unfolding method

被引:4
|
作者
Ene, Horia [1 ]
Timofte, Claudia [2 ]
机构
[1] Acad Romana, Inst Math, RO-70700 Bucharest, Romania
[2] Univ Bucharest, Fac Phys, Bucharest, Romania
关键词
homogenization; linear elasticity; imperfect contact; the periodic unfolding method; HOMOGENIZATION; ELASTICITY; BEHAVIOR; CONTACT; DOMAINS;
D O I
10.3233/ASY-141239
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the periodic unfolding method, we shall analyze the asymptotic behavior of the solution of a system of coupled partial differential equations appearing in the modeling of an elasticity problem in a periodic structure formed by two interwoven and connected components with imperfect contact at the interface. Our setting proves to be relevant for analyzing contact problems for multiphase composites with imperfect interfaces.
引用
收藏
页码:111 / 122
页数:12
相关论文
共 50 条
  • [1] Homogenization of an elastic double-porosity medium with imperfect interface via the periodic unfolding method
    Donato, Patrizia
    Tentea, Iulian
    BOUNDARY VALUE PROBLEMS, 2013,
  • [2] Homogenization of an elastic double-porosity medium with imperfect interface via the periodic unfolding method
    Patrizia Donato
    Iulian Ţenţea
    Boundary Value Problems, 2013
  • [3] HOMOGENIZATION AND CORRECTORS FOR THE HYPERBOLIC PROBLEMS WITH IMPERFECT INTERFACES VIA THE PERIODIC UNFOLDING METHOD
    Yang, Zhanying
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (01) : 249 - 272
  • [4] THE PERIODIC UNFOLDING METHOD FOR A CLASS OF PARABOLIC PROBLEMS WITH IMPERFECT INTERFACES
    Yang, Zhanying
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (05): : 1279 - 1302
  • [5] Local stress in periodic composites via the Riesz summability method
    Caporale, Andrea
    Luciano, Raimondo
    Medaglia, Carlo Maria
    Penna, Rosa
    COMPOSITES PART B-ENGINEERING, 2018, 150 : 27 - 35
  • [6] A NOTE ON DIMENSION REDUCTION FOR UNBOUNDED INTEGRALS WITH PERIODIC MICROSTRUCTURE VIA THE UNFOLDING METHOD FOR SLENDER DOMAINS
    Zappale, Elvira
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2017, 6 (02): : 299 - 318
  • [7] A novel homogenization method for periodic piezoelectric composites via diffused material interface
    Challagulla, Sasank
    Pillai, Ayyappan Unnikrishna
    Rahaman, Mohammad Masiur
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024, 31 (23) : 5717 - 5736
  • [8] Homogenization of quasiconvex integrals via the periodic unfolding method
    Cioranescu, D
    Damlamian, A
    De Arcangelis, R
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 37 (05) : 1435 - 1453
  • [9] Adaptive affine homogenization method for Visco-hyperelastic composites with imperfect interface
    Kim, Youngsoo
    Jung, Jiyoung
    Lee, Sangryun
    Doghri, Issam
    Ryu, Seunghwa
    APPLIED MATHEMATICAL MODELLING, 2022, 107 : 72 - 84
  • [10] The periodic unfolding method for perforated domains and Neumann sieve models
    Cioranescu, D.
    Damlamian, A.
    Griso, G.
    Onofrei, D.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 89 (03): : 248 - 277