RECONSTRUCTION OF THE TIME-DEPENDENT SOURCE TERM IN A STOCHASTIC FRACTIONAL DIFFUSION EQUATION

被引:8
作者
Liu, Chan [1 ]
Wen, Jin [2 ]
Zhang, Zhidong [3 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Northwest Normal Univ, Dept Math, Lanzhou 730070, Gansu, Peoples R China
[3] Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Guangdong, Peoples R China
基金
芬兰科学院; 中国国家自然科学基金;
关键词
Inverse problem; stochastic fractional diffusion equation; random source; Volterra integral equation; mollification; UNKNOWN SOURCE; POTENTIALS; CALCULUS;
D O I
10.3934/ipi.2020053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, an inverse problem in the fractional diffusion equation with random source is considered. The measurements we use are the statistical moments of the realizations of single point observation u(x(0), t, omega). We build a representation of the solution u in the integral sense, then prove some theoretical results like uniqueness and stability. After that, we establish a numerical algorithm to solve the unknowns, where a mollification method is used.
引用
收藏
页码:1001 / 1024
页数:24
相关论文
共 61 条
  • [21] Muntz Spectral Methods for the Time-Fractional Diffusion Equation
    Hou, Dianming
    Hasan, Mohammad Tanzil
    Xu, Chuanju
    [J]. COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2018, 18 (01) : 43 - 62
  • [22] Carleman estimates for the time-fractiona advection-diffusion equations and applications
    Huang, Xinchi
    Li, Zhiyuan
    Yamamoto, Masahiro
    [J]. INVERSE PROBLEMS, 2019, 35 (04)
  • [23] An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data
    Jin, Bangti
    Lazarov, Raytcho
    Zhou, Zhi
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (01) : 197 - 221
  • [24] A tutorial on inverse problems for anomalous diffusion processes
    Jin, Bangti
    Rundell, William
    [J]. INVERSE PROBLEMS, 2015, 31 (03)
  • [25] On an inverse potential problem for a fractional reaction-diffusion equation
    Kaltenbacher, Barbara
    Rundell, William
    [J]. INVERSE PROBLEMS, 2019, 35 (06)
  • [26] Kilbas AA, 2006, N HOLLAND MATH STUDI, V204
  • [27] DERIVATION OF THE CONTINUOUS-TIME RANDOM-WALK EQUATION
    KLAFTER, J
    SILBEY, R
    [J]. PHYSICAL REVIEW LETTERS, 1980, 44 (02) : 55 - 58
  • [28] APPLICATIONS OF FRACTIONAL CALCULUS TO THE THEORY OF VISCOELASTICITY
    KOELLER, RC
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1984, 51 (02): : 299 - 307
  • [29] GLOBAL UNIQUENESS FOR THE FRACTIONAL SEMILINEAR SCHRODINGER EQUATION
    Lai, Ru-Yu
    Lin, Yi-Hsuan
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (03) : 1189 - 1199
  • [30] Inverse random source scattering for the Helmholtz equation in inhomogeneous media
    Li, Ming
    Chen, Chuchu
    Li, Peijun
    [J]. INVERSE PROBLEMS, 2018, 34 (01)