Bucket of Deep Transfer Learning Features and Classification Models for Melanoma Detection

被引:19
作者
Manzo, Mario [1 ]
Pellino, Simone [2 ]
机构
[1] Univ Naples LOrientale, Informat Technol Serv, I-80121 Naples, Italy
[2] IS Mattei Aversa MIUR, Dept Appl Sci, I-81031 Rome, Italy
关键词
melanoma detection; deep learning; transfer learning; ensemble classification; METHODOLOGICAL APPROACH; DIAGNOSIS; NETWORK;
D O I
10.3390/jimaging6120129
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Malignant melanoma is the deadliest form of skin cancer and, in recent years, is rapidly growing in terms of the incidence worldwide rate. The most effective approach to targeted treatment is early diagnosis. Deep learning algorithms, specifically convolutional neural networks, represent a methodology for the image analysis and representation. They optimize the features design task, essential for an automatic approach on different types of images, including medical. In this paper, we adopted pretrained deep convolutional neural networks architectures for the image representation with purpose to predict skin lesion melanoma. Firstly, we applied a transfer learning approach to extract image features. Secondly, we adopted the transferred learning features inside an ensemble classification context. Specifically, the framework trains individual classifiers on balanced subspaces and combines the provided predictions through statistical measures. Experimental phase on datasets of skin lesion images is performed and results obtained show the effectiveness of the proposed approach with respect to state-of-the-art competitors.
引用
收藏
页数:15
相关论文
共 45 条
[31]   A methodological approach to classify typical and atypical pigment network patterns for melanoma diagnosis [J].
Pathan, Sameena ;
Prabhu, K. Gopalakrishna ;
Siddalingaswamy, P. C. .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2018, 44 :25-37
[32]   Skin lesion classification enhancement using border-line features - The melanoma vs nevus problem [J].
Pereira, Pedro M. M. ;
Fonseca-Pinto, Rui ;
Paiva, Rui Pedro ;
Assuncao, Pedro A. A. ;
Tavora, Luis M. N. ;
Thomaz, Lucas A. ;
Faria, Sergio M. M. .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 57 (57)
[33]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[34]   ImageNet Large Scale Visual Recognition Challenge [J].
Russakovsky, Olga ;
Deng, Jia ;
Su, Hao ;
Krause, Jonathan ;
Satheesh, Sanjeev ;
Ma, Sean ;
Huang, Zhiheng ;
Karpathy, Andrej ;
Khosla, Aditya ;
Bernstein, Michael ;
Berg, Alexander C. ;
Fei-Fei, Li .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 115 (03) :211-252
[35]  
Shie CK, 2015, IEEE ENG MED BIO, P711, DOI 10.1109/EMBC.2015.7318461
[36]   Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning [J].
Shin, Hoo-Chang ;
Roth, Holger R. ;
Gao, Mingchen ;
Lu, Le ;
Xu, Ziyue ;
Nogues, Isabella ;
Yao, Jianhua ;
Mollura, Daniel ;
Summers, Ronald M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1285-1298
[37]   A survey on Image Data Augmentation for Deep Learning [J].
Shorten, Connor ;
Khoshgoftaar, Taghi M. .
JOURNAL OF BIG DATA, 2019, 6 (01)
[38]  
Sultana Nazneen N., 2018, 2018 International Conference on Information Technology (ICIT), P68, DOI 10.1109/ICIT.2018.00025
[39]   Deep residual network with regularised fisher framework for detection of melanoma [J].
Sultana, Nazneen N. ;
Mandal, Bappaditya ;
Puhan, N. B. .
IET COMPUTER VISION, 2018, 12 (08) :1096-1104
[40]  
Szegedy C, 2014, Arxiv, DOI [arXiv:1312.6199, DOI 10.1109/CVPR.2015.7298594]