Design and Validation of Microstrip Gap Waveguides and Their Transitions to Rectangular Waveguide, for Millimeter-Wave Applications

被引:56
作者
Brazalez, Astrid Algaba [1 ]
Rajo-Iglesias, Eva [2 ]
Vazquez-Roy, Jose Luis [2 ]
Vosoogh, Abbas [1 ]
Kildal, Per-Simon [1 ]
机构
[1] Chalmers Univ Technol, Dept Signals & Syst, SE-41296 Gothenburg, Sweden
[2] Univ Carlos III Madrid, Dept Signal Theory & Commun, Madrid 28911, Spain
基金
欧洲研究理事会; 瑞典研究理事会;
关键词
Artificial magnetic conductor (AMC); dissipation loss; feed network; gap waveguide; microstrip; millimeter waves; packaging; perfect magnetic conductor (PMC); rectangular waveguide; transition; SUSPENDED-STRIP; ARRAY ANTENNA; SIW CAVITY; BED; NAILS;
D O I
10.1109/TMTT.2015.2495141
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper describes the design methodology, experimental validation, and practical considerations of two millimeter-wave wideband vertical transitions from two gap waveguide versions (inverted microstrip gap waveguide, and microstrip packaged by using gap waveguide) to standard WR-15 rectangular waveguide. The experimental results show smaller than -10 dB over relative bandwidths larger than 25% and 26.6% when Rogers RO3003 and RO4003 materials are used, respectively. The vertical transition from standard microstrip line packaged by a lid of pins to WR-15 shows measured return loss better than 15 dB over 13.8% relative bandwidth. The new transitions can be used as interfaces between gap waveguide feed networks for 60-GHz antenna systems, testing equipment (like vector network analyzers), and components with WR-15 ports, such as transmitting-receiving amplifiers. Moreover, the paper documents the losses of different gap waveguide prototypes compared with unpackaged microstrip line and substrate integrated waveguide (SIW). This investigation shows that in V-band, the lowest losses are achieved with inverted microstrip gap waveguide.
引用
收藏
页码:4035 / 4050
页数:16
相关论文
共 37 条
[1]  
Algaba Brazalez A., 2012, P IEEE ANT PROP SOC, P1, DOI DOI 10.1109/APS.2012.6349302
[2]  
Artemenko A, 2011, EUR MICROW CONF, P838
[3]   NOVEL TWO-LAYER MILLIMETER-WAVE SLOT ARRAY ANTENNAS BASED ON SUBSTRATE INTEGRATED WAVEGUIDES [J].
Bakhtafrooz, A. ;
Borji, A. ;
Busuioc, D. ;
Safavi-Naeini, S. .
PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2010, 109 :475-491
[4]   Robust Microstrip-to-Waveguide Transitions for Millimeter-Wave Radar Sensor Applications [J].
Boukari, Bouraima ;
Moldovan, Emilia ;
Affes, Sofiene ;
Wu, Ke ;
Bosisio, Renato G. ;
Tatu, Serioja O. .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2009, 8 :759-762
[5]  
Bozzi M., 2007, P 8 INT C TEL MOD SA, pP
[6]  
Brazalez A. A., 2012, 6 EUR C ANT PROP PRA
[7]  
Brazalez A. Algaba, 2014, 8 EUR C ANT PROP HAG
[8]   Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide [J].
Deslandes, Dominic ;
Wu, Ke .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2006, 54 (06) :2516-2526
[9]   Test-Fixture for Suspended-Strip Gap-Waveguide Technology on Ka-Band [J].
Gahete Arias, Carlos ;
Baquero Escudero, Mariano ;
Valero Nogueira, Alejandro ;
Vila Jimenez, Antonio .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2013, 23 (06) :321-323
[10]   RADIATION FROM MICROSTRIP CIRCUITS - AN INTRODUCTION [J].
GARDIOL, FE .
INTERNATIONAL JOURNAL OF MICROWAVE AND MILLIMETER-WAVE COMPUTER-AIDED ENGINEERING, 1991, 1 (02) :225-235