PICK1-mediated Glutamate Receptor Subunit 2 (GluR2) Trafficking Contributes to Cell Death in Oxygen/Glucose-deprived Hippocampal Neurons

被引:61
作者
Dixon, Rebecca M. [1 ]
Mellor, Jack R. [1 ]
Hanley, Jonathan G. [1 ]
机构
[1] Univ Bristol, Dept Anat, Ctr Synapt Plast, MRC, Bristol BS8 1TD, Avon, England
基金
英国惠康基金; 英国医学研究理事会;
关键词
CA2+-PERMEABLE AMPA RECEPTORS; GLOBAL-ISCHEMIA; SYNAPTIC PLASTICITY; CA2+ PERMEABILITY; DOWN-REGULATION; PICK1; EXPRESSION; CALCIUM; BLOCKADE;
D O I
10.1074/jbc.M901203200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Oxygen and glucose deprivation (OGD) induces delayed cell death in hippocampal CA1 neurons via Ca2+/Zn2+-permeable, GluR2-lacking AMPA receptors (AMPARs). Following OGD, synaptic AMPAR currents in hippocampal neurons show marked inward rectification and increased sensitivity to channel blockers selective for GluR2-lacking AMPARs. This occurs via two mechanisms: a delayed down-regulation of GluR2 mRNA expression and a rapid internalization of GluR2-containing AMPARs during the OGD insult, which are replaced by GluR2-lacking receptors. The mechanisms that underlie this rapid change in subunit composition are unknown. Here, we demonstrate that this trafficking event shares features in common with events that mediate long term depression and long term potentiation and is initiated by the activation of N-methyl-D-aspartic acid receptors. Using biochemical and electrophysiological approaches, we show that peptides that interfere with PICK1 PDZ domain interactions block the OGD-induced switch in subunit composition, implicating PICK1 in restricting GluR2 from synapses during OGD. Furthermore, we show that GluR2-lacking AMPARs that arise at synapses during OGD as a result of PICK1 PDZ interactions are involved in OGD-induced delayed cell death. This work demonstrates that PICK1 plays a crucial role in the response to OGD that results in altered synaptic transmission and neuronal death and has implications for our understanding of the molecular mechanisms that underlie cell death during stroke.
引用
收藏
页码:14230 / 14235
页数:6
相关论文
共 37 条
[1]   Conservation of glutamate receptor 2-containing AMPA receptors during long-term potentiation [J].
Adesnik, Hillel ;
Nicoll, Roger A. .
JOURNAL OF NEUROSCIENCE, 2007, 27 (17) :4598-4602
[2]   Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression [J].
Bellone, C ;
Lüscher, C .
NATURE NEUROSCIENCE, 2006, 9 (05) :636-641
[3]  
CHOI DW, 1995, TRENDS NEUROSCI, V18, P58
[4]   Receptor trafficking and synaptic plasticity [J].
Collingridge, GL ;
Isaac, JTR ;
Wang, YT .
NATURE REVIEWS NEUROSCIENCE, 2004, 5 (12) :952-962
[5]   Regulation of Ca2+-permeable AMPA receptors:: synaptic plasticity and beyond [J].
Cull-Candy, Stuart ;
Kelly, Leah ;
Farrant, Mark .
CURRENT OPINION IN NEUROBIOLOGY, 2006, 16 (03) :288-297
[6]   PDZ proteins interacting with C-terminal GluR2/3 are involved in a PKC-dependent regulation of AMPA receptors at hippocampal synapses [J].
Daw, MI ;
Chittajallu, R ;
Bortolotto, ZA ;
Dev, KK ;
Duprat, F ;
Henley, JM ;
Collingridge, GL ;
Isaac, JTR .
NEURON, 2000, 28 (03) :873-886
[7]   Regulatory mechanisms of AMPA receptors in synaptic plasticity [J].
Derkach, Victor A. ;
Oh, Michael C. ;
Guire, Eric S. ;
Soderling, Thomas R. .
NATURE REVIEWS NEUROSCIENCE, 2007, 8 (02) :101-113
[8]  
Dingledine R, 1999, PHARMACOL REV, V51, P7
[9]   Calcium-permeable AMPA receptor plasticity is mediated by subunit-specific interactions with PICK1 and NSF [J].
Gardner, SM ;
Takamiya, K ;
Xia, J ;
Suh, JG ;
Johnson, R ;
Yu, S ;
Huganir, RL .
NEURON, 2005, 45 (06) :903-915
[10]  
Gorter JA, 1997, J NEUROSCI, V17, P6179