Addition of glycerol enhances the flexibility of gelatin hydrogel sheets; application for in utero tissue engineering

被引:12
|
作者
Watanabe, Miho [1 ,2 ,6 ]
Li, Haiying [1 ,2 ]
Yamamoto, Masaya [3 ,4 ]
Horinaka, Jun-ichi [5 ]
Tabata, Yasuhiko [3 ]
Flake, Alan W. [1 ,2 ]
机构
[1] Childrens Hosp Philadelphia, Dept Surg, Philadelphia, PA 19104 USA
[2] Childrens Hosp Philadelphia, Childrens Ctr Fetal Res, Philadelphia, PA 19104 USA
[3] Kyoto Univ, Inst Frontier Med Sci, Dept Biomat Field Tissue Engn, Kyoto, Japan
[4] Tohoku Univ, Grad Sch Engn, Dept Marial Proc, Sendai, Miyagi, Japan
[5] Kyoto Univ, Grad Sch Engn, Dept Mat Chem, Kyoto, Japan
[6] Osaka Univ, Grad Sch Med, Dept Pediat Surg, 2-2 Yamadaoka, Suita, Osaka 5650871, Japan
关键词
fetal therapy; flexible sheet; gelatin hydrogel; plasticizer; PRENATAL CLOSURE; STEM-CELLS; SCAFFOLD; MYELOMENINGOCELE; CHONDROCYTES; NANOFIBER; CARRIER; MODEL;
D O I
10.1002/jbm.b.34756
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Gelatin hydrogels are naturally derived scaffolds useful for tissue engineering because of their cytocompatibility and controllable degradability. However, they are brittle and inflexible when dry, which limits their use for in utero tissue engineering in large animal models. Therefore, in this study, we attempted to generate flexible gelatin sheets by adding various plasticizers with different molecular weights (MW). We systematically evaluated the flexibility, sustainability, and potential clinical utility of the resulting flexible gelatin sheets. Gelatin sheets with low-MW plasticizers, such as monosaccharides or sugar alcohols, showed a reduced tensile modulus in dynamic viscoelasticity, which reflected their actual flexibility. Wet gelatin sheets containing plasticizers showed higher tensile strength than the nonplasticizer control, although wet gelatin sheets under all conditions had a much lower tensile strength than dry gelatin sheets. In a functional study, gelatin sheets containing glycerol, which has the lowest MW among sugar alcohols, showed encouraging results, such as good fit to the curvature of the experimental animal, biocompatibility, and suitability for endoscopic approaches. The findings of this study should enable the expansion of future applications for flexible gelatin sheets.
引用
收藏
页码:921 / 931
页数:11
相关论文
共 50 条
  • [1] Fabrication and characterisation of hybrid nanocollagen-gelatin thermoresponsive hydrogel for skin tissue engineering application
    Lo, Samantha
    Mahmoudi, Ebrahim
    Maarof, Manira
    Busra, Mh Fauzi Mh
    TISSUE ENGINEERING PART A, 2022, 28 : 716 - 716
  • [2] Modification and optimization of electrospun gelatin sheets by electronbeam irradiation for soft tissue engineering
    Lee J.B.
    Ko Y.G.
    Cho D.
    Park W.H.
    Kwon O.H.
    Biomaterials Research, 21 (1)
  • [3] Material properties in unconfined compression of gelatin hydrogel for skin tissue engineering applications
    Karimi, Alireza
    Navidbakhsh, Mahdi
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2014, 59 (06): : 479 - 486
  • [4] Gelatin Methacrylate Hydrogel for Tissue Engineering Applications-A Review on Material Modifications
    Bupphathong, Sasinan
    Quiroz, Carlos
    Huang, Wei
    Chung, Pei-Feng
    Tao, Hsuan-Ya
    Lin, Chih-Hsin
    PHARMACEUTICALS, 2022, 15 (02)
  • [5] Multilayered polycaprolactone/gelatin fiber-hydrogel composite for tendon tissue engineering
    Yang, Guang
    Lin, Hang
    Rothrauff, Benjamin B.
    Yu, Shuting
    Tuan, Rocky S.
    ACTA BIOMATERIALIA, 2016, 35 : 68 - 76
  • [6] Advances in modulating mechanical properties of gelatin-based hydrogel in tissue engineering
    Azmir, Mohammed Syed Nurul Azam
    Moni, Md. Noyon
    Gobetti, Anna
    Ramorino, Giorgio
    Dey, Kamol
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2025, 74 (03) : 215 - 250
  • [7] Designing Viscoelastic Gelatin-PEG Macroporous Hybrid Hydrogel with Anisotropic Morphology and Mechanical Properties for Tissue Engineering Application
    Dey, Kamol
    Agnelli, Silvia
    Sartore, Luciana
    MICRO-SWITZERLAND, 2023, 3 (02): : 434 - 457
  • [8] Synthesis and in vitro evaluation of thermosensitive hydrogel scaffolds based on (PNIPAAm-PCL-PEG-PCL-PNIPAAm)/Gelatin and (PCL-PEG-PCL)/Gelatin for use in cartilage tissue engineering
    Saghebasl, Solmaz
    Davaran, Soodabeh
    Rahbarghazi, Reza
    Montaseri, Azadeh
    Salehi, Roya
    Ramazani, Ali
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2018, 29 (10) : 1185 - 1206
  • [9] 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering
    Dutta, Sayan Deb
    Hexiu, Jin
    Patel, Dinesh K.
    Ganguly, Keya
    Lim, Ki-Taek
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 167 : 644 - 658
  • [10] Tuning gelatin-based hydrogel towards bioadhesive ocular tissue engineering applications
    Sharifi, Sina
    Islam, Mohammad Mirazul
    Sharifi, Hannah
    Islam, Rakibul
    Koza, Darrell
    Reyes-Ortega, Felisa
    Alba-Molina, David
    Nilsson, Per H.
    Dohlman, Claes H.
    Mollnes, Tom Eirik
    Chodosh, James
    Gonzalez-Andrades, Miguel
    BIOACTIVE MATERIALS, 2021, 6 (11) : 3947 - 3961