Friction evolution with transition from commensurate to incommensurate contacts between graphene layers

被引:55
作者
Dong, Yun [1 ,2 ,3 ]
Duan, Zaoqi [1 ,2 ]
Tao, Yi [1 ,2 ]
Wei, Zhiyong [1 ,2 ]
Gueye, Birahima [1 ,2 ]
Zhang, Yan [1 ,2 ]
Chen, Yunfei [1 ,2 ]
机构
[1] Southeast Univ, Sch Mech Engn, Nanjing 211189, Jiangsu, Peoples R China
[2] Southeast Univ, Jiangsu Key Lab Design & Manufacture Micronano Bi, Nanjing 211189, Jiangsu, Peoples R China
[3] Lanzhou Univ Technol, Sch Mech & Elect Engn, Lanzhou 730050, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Friction evolution; Ultra-low friction; Moire patterns; Graphene layers; SUPERLUBRICITY; DYNAMICS; QUALITY; MODEL;
D O I
10.1016/j.triboint.2019.03.058
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
By performing molecular dynamics simulations, the interfacial atomic forces of two contacting graphene flakes are calculated to quantitatively illustrate the friction evolution from commensurate to incommensurate contacts. It is found that the atomic force distributions display moire patterns. The moire patterns for the contact stress indicate the contact quality, while the patterns for the shear stress are related to the friction force. In both the commensurate and incommensurate contacts, part of the interface atoms experiences positive friction force while the other atoms negative friction force. However, the interfacial friction distributions for the incommensurate state clearly demonstrate that the positive and negative atomic friction forces distribute more symmetry than that in the commensurate state, which produces an ultra-low effective friction force.
引用
收藏
页码:259 / 266
页数:8
相关论文
共 47 条
[2]   Macroscale superlubricity enabled by graphene nanoscroll formation [J].
Berman, Diana ;
Deshmukh, Sanket A. ;
Sankaranarayanan, Subramanian K. R. S. ;
Erdemir, Ali ;
Sumant, Anirudha V. .
SCIENCE, 2015, 348 (6239) :1118-1122
[3]   Nanoscale Directional Motion towards Regions of Stiffness [J].
Chang, Tienchong ;
Zhang, Hongwei ;
Guo, Zhengrong ;
Guo, Xingming ;
Gao, Huajian .
PHYSICAL REVIEW LETTERS, 2015, 114 (01)
[4]   Molecular dynamics simulations of mechanical properties for Cu(001)/Ni(001) twist boundaries [J].
Chen, S. D. ;
Zhou, Y. K. ;
Soh, A. K. .
COMPUTATIONAL MATERIALS SCIENCE, 2012, 61 :239-242
[5]   Superlubricity of graphite [J].
Dienwiebel, M ;
Verhoeven, GS ;
Pradeep, N ;
Frenken, JWM ;
Heimberg, JA ;
Zandbergen, HW .
PHYSICAL REVIEW LETTERS, 2004, 92 (12) :126101-1
[6]   Model experiments of superlubricity of graphite [J].
Dienwiebel, M ;
Pradeep, N ;
Verhoeven, GS ;
Zandbergen, HW ;
Frenken, JWM .
SURFACE SCIENCE, 2005, 576 (1-3) :197-211
[7]   Friction, slip and structural inhomogeneity of the buried interface [J].
Dong, Y. ;
Li, Q. ;
Wu, J. ;
Martini, A. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2011, 19 (06)
[8]   Influence of stiffness gradient on friction between graphene layers [J].
Dong Yun ;
Duan Zao-Qi ;
Tao Yi ;
Birahima, Gueye ;
Zhang Yan ;
Chen Yun-Fei .
ACTA PHYSICA SINICA, 2019, 68 (01)
[9]   Superlubric Sliding of Graphene Nanoflakes on Graphene [J].
Feng, Xiaofeng ;
Kwon, Sangku ;
Park, Jeong Young ;
Salmeron, Miquel .
ACS NANO, 2013, 7 (02) :1718-1724
[10]   Fluctuation-induced nucleation and dynamics of kinks on dislocation: Soliton and oscillation regimes in the two-dimensional Frenkel-Kontorova model [J].
Gornostyrev, YN ;
Katsnelson, MI ;
Kravtsov, AV ;
Trefilov, AV .
PHYSICAL REVIEW B, 1999, 60 (02) :1013-1018