Pr6O11-Coated High Capacity Layered Li[Li0.17Ni0.17Co0.10Mn0.56]O2 as a Cathode Material for Lithium Ion Batteries

被引:16
|
作者
Meng, Haixing [1 ]
Jin, Huifen [2 ]
Gao, Junkui [2 ]
Zhang, Lei [1 ]
Xu, Qiang [1 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China
[2] Tianjin Li Shen Battery Join Stock Co Ltd, Tianjin 300384, Peoples R China
关键词
SURFACE MODIFICATION; ELECTROCHEMICAL PERFORMANCE; PRASEODYMIUM OXIDE; HIGH-VOLTAGE; OXYGEN LOSS; IMPROVEMENT; LI(LI0.17NI0.25MN0.58)O-2; CONDUCTIVITY; CHEMISTRY; NI;
D O I
10.1149/2.0071410jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A Li-rich layered oxide Li[Li0.17Ni0.17Co0.10Mn0.56]O-2 is synthesized and coated with Pr6O11 by a chemical deposition method. The pristine and the Pr6O11-coated Li[Li0.17Ni0.17Co0.10Mn0.56]O-2 cathodes are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and charge-discharge measurements. After coating of Pr6O11, the bulk crystallographic structure, morphology and grain size of the layered Li[Li0.17Ni0.17Co0.10Mn0.56]O-2 are not essentially changed. Compared to the pristine Li[Li0.17Ni0.17Co0.10Mn0.56]O-2 cathode, the Pr6O11-coated Li[Li0.17Ni0.17Co0.10Mn0.56]O-2 cathodes coated with suitable thickness exhibit higher discharge capacity with lower irreversible capacity loss, better cyclability and higher rate capability. Especially, 5 wt% Pr6O11-coated sample displays the highest capacity (277.9 mAh g(-1) at 0.05 C rate), the best rate capability (196.2 mAh g(-1) at 1C rate) and the best cyclability (capacity retention of 91.2% in 50 cycles). Of particular concern is the polarization behavior of Pr6O11-coated cathodes coated with suitable thickness. Impedance analysis demonstrates that the rate capability of Pr6O11-coated cathodes are mainly affected by the lithium ion diffusion resistance through the surface layer (solid-electrolyte interfacial (SEI) layer and Pr6O11 coating), while influences of the faradaic charge transfer resistance is negligible. This work shows a promising approach to improve the electrochemical performance of Li-rich layered oxides by surface modification of semiconductor materials. (C) 2014 The Electrochemical Society. All rights reserved.
引用
收藏
页码:A1564 / A1571
页数:8
相关论文
共 50 条
  • [21] A novel layered Li[Li0.12NizMg0.32-zMn0.56]O2 cathode material for lithium-ion batteries
    Lee, CW
    Sun, YK
    Prakash, J
    ELECTROCHIMICA ACTA, 2004, 49 (25) : 4425 - 4432
  • [22] Preparation and electrochemical characterization of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 coated with LiAlO2
    Huang, Xiao
    Qiao, Qiqi
    Sun, Yanyun
    Li, Feng
    Wang, Yonglong
    Ye, Shihai
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2015, 19 (03) : 805 - 812
  • [23] Protective Spinel Coating for Li1.17Ni0.17Mn0.50Co0.17O2 Cathode for Li-Ion Batteries through Single-Source Precursor Approach
    Shevtsov, Andrey
    Han, Haixiang
    Morozov, Anatolii
    Carozza, Jesse C.
    Savina, Aleksandra A.
    Shakhova, Iaroslava
    Khasanova, Nellie R.
    Antipov, Evgeny, V
    Dikarev, Evgeny, V
    Abakumov, Artem M.
    NANOMATERIALS, 2020, 10 (09) : 1 - 16
  • [24] Electrochemical performance of Li-rich Li[Li0.2Mn0.56Ni0.17Co0.07]O2 cathode stabilized by metastable Li2SiO3 surface modification for advanced Li-ion batteries
    Wang, Dandan
    Zhang, Xiaoping
    Xiao, Ruijuan
    Lu, Xia
    Li, Yaping
    Xu, Tinghua
    Pan, Du
    Hu, Yong-Sheng
    Bai, Ying
    ELECTROCHIMICA ACTA, 2018, 265 : 244 - 253
  • [25] Solid-state synthesis of Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode materials for lithium-ion batteries
    Hao, Wenjuan
    Zhan, Hanhui
    Chen, Han
    Wang, Yanhong
    Tan, Qiangqiang
    Su, Fabing
    PARTICUOLOGY, 2014, 15 : 18 - 26
  • [26] Graphene modified Li- rich cathode material Li[Li0.26Ni0.07Co0.07Mn0.56]O2 for lithium ion battery
    Li, Xiangjun
    Xin, Hongxing
    Qin, Xiaoying
    Yuan, Xueqin
    Li, Di
    Zhang, Jian
    Song, Chunjun
    Wang, Ling
    Sun, Guolong
    Liu, Yongfei
    FUNCTIONAL MATERIALS LETTERS, 2014, 7 (06)
  • [27] ELECTROCHEMICAL PERFORMANCES OF COMPOSITE CATHODE MATERIALS Li1.2Ni0.17Co0.10Mn0.53O2 and Li1.2Ni0.2Mn0.6O2
    Lanina, E. V.
    Zhuravlev, V. D.
    Ermakova, L. V.
    Petrov, A. N.
    Pachuev, A. V.
    Sheldeshov, N. V.
    ELECTROCHIMICA ACTA, 2016, 212 : 810 - 821
  • [28] Amorphous Li2ZrO3 nanoparticles coating Li[Li0.17Mn0.58Ni0.25]O2 cathode material for enhanced rate and cyclic performance in lithium ion storage
    Guo, Zhaoxin
    Ma, Tengfei
    Xu, TingTing
    Chen, Yan
    Yang, Gang
    Li, Yuhong
    MATERIALS CHEMISTRY AND PHYSICS, 2020, 255
  • [29] Synthesis and Electrochemical Performance of Li-rich Cathode Material Li[Li0.2Ni0.16Mn0.56Co0.06Al0.02]O2 in the Lithium-Ion Battery
    Zhang Hai-Lang
    Ye Yan-Yan
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2015, 10 (12): : 10718 - 10725
  • [30] Improved electrochemical and thermal performances of layered Li [Li0.2Ni0.17Co0.07Mn0.56]O2 via Li2ZrO3 surface modification
    Zhang, Xiaoping
    Sun, Shuwei
    Wu, Qing
    Wan, Ning
    Pan, Du
    Bai, Ying
    JOURNAL OF POWER SOURCES, 2015, 282 : 378 - 384