Pr6O11-Coated High Capacity Layered Li[Li0.17Ni0.17Co0.10Mn0.56]O2 as a Cathode Material for Lithium Ion Batteries

被引:16
|
作者
Meng, Haixing [1 ]
Jin, Huifen [2 ]
Gao, Junkui [2 ]
Zhang, Lei [1 ]
Xu, Qiang [1 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China
[2] Tianjin Li Shen Battery Join Stock Co Ltd, Tianjin 300384, Peoples R China
关键词
SURFACE MODIFICATION; ELECTROCHEMICAL PERFORMANCE; PRASEODYMIUM OXIDE; HIGH-VOLTAGE; OXYGEN LOSS; IMPROVEMENT; LI(LI0.17NI0.25MN0.58)O-2; CONDUCTIVITY; CHEMISTRY; NI;
D O I
10.1149/2.0071410jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A Li-rich layered oxide Li[Li0.17Ni0.17Co0.10Mn0.56]O-2 is synthesized and coated with Pr6O11 by a chemical deposition method. The pristine and the Pr6O11-coated Li[Li0.17Ni0.17Co0.10Mn0.56]O-2 cathodes are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and charge-discharge measurements. After coating of Pr6O11, the bulk crystallographic structure, morphology and grain size of the layered Li[Li0.17Ni0.17Co0.10Mn0.56]O-2 are not essentially changed. Compared to the pristine Li[Li0.17Ni0.17Co0.10Mn0.56]O-2 cathode, the Pr6O11-coated Li[Li0.17Ni0.17Co0.10Mn0.56]O-2 cathodes coated with suitable thickness exhibit higher discharge capacity with lower irreversible capacity loss, better cyclability and higher rate capability. Especially, 5 wt% Pr6O11-coated sample displays the highest capacity (277.9 mAh g(-1) at 0.05 C rate), the best rate capability (196.2 mAh g(-1) at 1C rate) and the best cyclability (capacity retention of 91.2% in 50 cycles). Of particular concern is the polarization behavior of Pr6O11-coated cathodes coated with suitable thickness. Impedance analysis demonstrates that the rate capability of Pr6O11-coated cathodes are mainly affected by the lithium ion diffusion resistance through the surface layer (solid-electrolyte interfacial (SEI) layer and Pr6O11 coating), while influences of the faradaic charge transfer resistance is negligible. This work shows a promising approach to improve the electrochemical performance of Li-rich layered oxides by surface modification of semiconductor materials. (C) 2014 The Electrochemical Society. All rights reserved.
引用
收藏
页码:A1564 / A1571
页数:8
相关论文
共 50 条
  • [11] High capacity spherical Li[Li0.24Mn0.55Co0.14Ni0.07]O2 cathode material for lithium ion batteries
    Wang, Ying
    Sharma, Neeraj
    Su, Dawei
    Bishop, David
    Ahn, Hyojun
    Wang, Guoxiu
    SOLID STATE IONICS, 2013, 233 : 12 - 19
  • [12] Surface Modification of Li-rich Layered Li(Li0.17Ni0.2Mn0.58Co0.05)O2 Oxide with TiO2(B) as the Cathode for Lithium-ion Batteries
    Liu Qin
    Yuan Wen
    Gao Xue-Ping
    JOURNAL OF INORGANIC MATERIALS, 2014, 29 (12) : 1257 - 1264
  • [13] Surface modification of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 with LiAlSiO4 fast ion conductor as cathode material for Li-ion batteries
    Sun, Y. Y.
    Li, F.
    Qiao, Q. Q.
    Cao, J. S.
    Wang, Y. L.
    Ye, S. H.
    ELECTROCHIMICA ACTA, 2015, 176 : 1464 - 1475
  • [14] In situ X-ray absorption spectroscopic study of Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2
    Ito, Atsushi
    Sato, Yuichi
    Sanada, Takashi
    Hatano, Masaharu
    Horie, Hideaki
    Ohsawa, Yasuhiko
    JOURNAL OF POWER SOURCES, 2011, 196 (16) : 6828 - 6834
  • [15] AlF3 Surface-Coated Li[Li0.2Ni0.17Co0.07Mn0.56]O2 Nanoparticles with Superior Electrochemical Performance for Lithium-Ion Batteries
    Sun, Shuwei
    Yin, Yanfeng
    Wan, Ning
    Wu, Qing
    Zhang, Xiaoping
    Pan, Du
    Bai, Ying
    Lu, Xia
    CHEMSUSCHEM, 2015, 8 (15) : 2544 - 2550
  • [16] Preparation and Electrochemical Performance of Li-rich Cathode Material Li1.17[Ni0.17Co0.17Mn0.50]O2 Synthesized by Solid State Method via Acetate Precursor for Li-ion Batteries
    Liu, Xinnuan
    Zhou, Luozeng
    Xu, Qunjie
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2015, 10 (11): : 8899 - 8909
  • [17] Enhanced high rate performance of Li[Li0.17Ni0.2Co0.05Mn0.58-xAlx]O2-0.5x cathode material for lithium-ion batteries
    Wang, Y. L.
    Huang, X.
    Li, F.
    Cao, J. S.
    Ye, S. H.
    RSC ADVANCES, 2015, 5 (61) : 49651 - 49656
  • [18] LaF3-coated Li[Li0.2Mn0.56Ni0.16Co0.08]O2 as cathode material with improved electrochemical performance for lithium ion batteries
    Xie, Qingliang
    Hu, Zhibiao
    Zhao, Chenhao
    Zhang, Shuirong
    Liu, Kaiyu
    RSC ADVANCES, 2015, 5 (63): : 50859 - 50864
  • [19] Lithium-Rich Li1.17Ni0.17Co0.17Mn0.5O2 Cathode Material for Lithium-Ion Cells: Effect of Calcination Temperature on Electrochemical Performance
    Pillai, Akhilash Mohanan
    Salini, Patteth S.
    John, Bibin
    Suchithra, C.
    Sarojiniamma, Sujatha
    Devassy, Mercy Thelakkattu
    ENERGY & FUELS, 2023, 37 (18) : 14334 - 14340
  • [20] In situ polyaniline modified cathode material Li [Li0.2Mn0.54Ni0.13Co0.13]O2 with high rate capacity for lithium ion batteries
    Xue, Qingrui
    Li, Jianling
    Xu, Guofeng
    Zhou, Hongwei
    Wang, Xindong
    Kang, Feiyu
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (43) : 18613 - 18623