Removing systematic errors in interionic potentials of mean force computed in molecular simulations using reaction-field-based electrostatics

被引:25
作者
Baumketner, Andrij [1 ]
机构
[1] Univ N Carolina, Dept Phys & Opt Sci, Charlotte, NC 28269 USA
关键词
association; biochemistry; molecular biophysics; molecular dynamics method; molecule-molecule reactions; organic compounds; reaction kinetics theory; sodium compounds; solvation; CHLORIDE ION-PAIR; FREE-ENERGY; DYNAMICS SIMULATIONS; SODIUM-CHLORIDE; MONTE-CARLO; DIELECTRIC-PROPERTIES; WATER MODELS; CUTOFF SIZE; LATTICE-SUM; TRUNCATION;
D O I
10.1063/1.3081138
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The performance of reaction-field methods to treat electrostatic interactions is tested in simulations of ions solvated in water. The potential of mean force between sodium chloride pair of ions and between side chains of lysine and aspartate are computed using umbrella sampling and molecular dynamics simulations. It is found that in comparison with lattice sum calculations, the charge-group-based approaches to reaction-field treatments produce a large error in the association energy of the ions that exhibits strong systematic dependence on the size of the simulation box. The atom-based implementation of the reaction field is seen to (i) improve the overall quality of the potential of mean force and (ii) remove the dependence on the size of the simulation box. It is suggested that the atom-based truncation be used in reaction-field simulations of mixed media.
引用
收藏
页数:10
相关论文
共 64 条
[1]  
AQVIST J, 1990, J PHYS CHEM-US, V94, P8021, DOI 10.1021/j100384a009
[2]   Effects of long-range electrostatic potential truncation on the free energy of ionic hydration [J].
Ashbaugh, HS ;
Wood, RH .
JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (19) :8135-8139
[3]   COMPUTER-SIMULATION STUDY OF THE MEAN FORCES BETWEEN FERROUS AND FERRIC IONS IN WATER [J].
BADER, JS ;
CHANDLER, D .
JOURNAL OF PHYSICAL CHEMISTRY, 1992, 96 (15) :6423-6427
[4]   REACTION FIELD, SCREENING, AND LONG-RANGE INTERACTIONS IN SIMULATIONS OF IONIC AND DIPOLAR SYSTEMS [J].
BARKER, JA .
MOLECULAR PHYSICS, 1994, 83 (06) :1057-1064
[5]   MONTE-CARLO STUDIES OF DIELECTRIC PROPERTIES OF WATER-LIKE MODELS [J].
BARKER, JA ;
WATTS, RO .
MOLECULAR PHYSICS, 1973, 26 (03) :789-792
[6]   The influence of different treatments of electrostatic interactions on the thermodynamics of folding of peptides [J].
Baumketner, A ;
Shea, JE .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (45) :21322-21328
[7]   Cutoff size need not strongly influence molecular dynamics results for solvated polypeptides [J].
Beck, DAC ;
Armen, RS ;
Daggett, V .
BIOCHEMISTRY, 2005, 44 (02) :609-616
[8]   GROMACS - A MESSAGE-PASSING PARALLEL MOLECULAR-DYNAMICS IMPLEMENTATION [J].
BERENDSEN, HJC ;
VANDERSPOEL, D ;
VANDRUNEN, R .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 91 (1-3) :43-56
[9]   SODIUM-CHLORIDE ION-PAIR INTERACTION IN WATER - COMPUTER-SIMULATION [J].
BERKOWITZ, M ;
KARIM, OA ;
MCCAMMON, JA ;
ROSSKY, PJ .
CHEMICAL PHYSICS LETTERS, 1984, 105 (06) :577-580
[10]   Water molecules in DNA recognition II:: A molecular dynamics view of the structure and hydration of the trp operator [J].
Bonvin, AMJJ ;
Sunnerhagen, M ;
Otting, G ;
van Gunsteren, WF .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 282 (04) :859-873