Local Fractional Laplace Variational Iteration Method for Nonhomogeneous Heat Equations Arising in Fractal Heat Flow

被引:8
作者
Xu, Shu [1 ,2 ]
Ling, Xiang [1 ]
Cattani, Carlo [3 ]
Xie, Gong-Nan [4 ]
Yang, Xiao-Jun [5 ]
Zhao, Yang [6 ]
机构
[1] Nanjing Univ Technol, Sch Mech & Power Engn, Nanjing 210009, Jiangsu, Peoples R China
[2] Huaihai Inst Technol, Sch Mech Engn, Lianyungang 222005, Peoples R China
[3] Univ Salerno, Dept Math, I-84084 Salerno, Italy
[4] Northwestern Polytech Univ, Sch Mech Engn, Xian 710072, Shaanxi, Peoples R China
[5] China Univ Min & Technol, Dept Math & Mech, Xuzhou 221008, Jiangsu, Peoples R China
[6] Jiangmen Polytech, Elect & Informat Technol Dept, Jiangmen 529090, Peoples R China
关键词
ORDER THEORY; CONDUCTION; DIFFUSION;
D O I
10.1155/2014/914725
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The local fractional Laplace variational iteration method is used for solving the nonhomogeneous heat equations arising in the fractal heat flow. The approximate solutions are nondifferentiable functions and their plots are also given to show the accuracy and efficiency to implement the previous method.
引用
收藏
页数:7
相关论文
共 32 条
[1]   HEAT CONDUCTION EQUATION IN FRACTIONAL-ORDER DERIVATIVES [J].
Alkhasov, A. B. ;
Meilanov, R. P. ;
Shabanova, M. R. .
JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS, 2011, 84 (02) :332-341
[2]   Fractional diffusion and fractional heat equation [J].
Angulo, JM ;
Ruiz-Medina, MD ;
Anh, VV ;
Grecksch, W .
ADVANCES IN APPLIED PROBABILITY, 2000, 32 (04) :1077-1099
[3]  
[Anonymous], DISCRETE DYN NAT SOC
[4]  
[Anonymous], J HEAT TRANS T ASME
[5]  
[Anonymous], 2012, FRACTIONAL DYNAMICS
[6]  
[Anonymous], 2013, ABSTR APPL ANAL
[7]  
[Anonymous], 2006, Journal of the Electrochemical Society
[8]   A Legendre tau-Spectral Method for Solving Time-Fractional Heat Equation with Nonlocal Conditions [J].
Bhrawy, A. H. ;
Alghamdi, M. A. .
SCIENTIFIC WORLD JOURNAL, 2014,
[9]   Analytical solutions for heat transfer on fractal and pre-fractal domains [J].
Davey, K. ;
Prosser, R. .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (1-2) :554-569
[10]   State space approach to thermoelectric fluid with fractional order heat transfer [J].
Ezzat, Magdy A. .
HEAT AND MASS TRANSFER, 2012, 48 (01) :71-82