Non-local propagation of correlations in quantum systems with long-range interactions

被引:626
作者
Richerme, Philip [1 ,2 ]
Gong, Zhe-Xuan [1 ,2 ]
Lee, Aaron [1 ,2 ]
Senko, Crystal [1 ,2 ]
Smith, Jacob [1 ,2 ]
Foss-Feig, Michael [1 ,2 ]
Michalakis, Spyridon [3 ]
Gorshkov, Alexey V. [1 ,2 ]
Monroe, Christopher [1 ,2 ]
机构
[1] Univ Maryland, Dept Phys, Joint Quantum Inst, College Pk, MD 20742 USA
[2] NIST, College Pk, MD 20742 USA
[3] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
TRAPPED IONS; ENTANGLEMENT; DYNAMICS;
D O I
10.1038/nature13450
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Themaximum speed with which information can propagate in a quantum many-body system directly affects how quickly disparate parts of the system can become correlated1-4 andhowdifficult the systemwill be to describe numerically5. For systems with only short-range interactions, Lieb and Robinson derived a constant-velocity bound that limits correlations towithina linear effective 'light cone'6.However, little isknown about the propagation speed in systems with long-range interactions, because analytic solutions rarely exist and because the best long-range bound7 is too loose to accurately describe the relevant dynamical timescales for any known spin model. Here we apply a variable-range Ising spin chainHamiltonian and a variable-rangeXY spin chainHamiltonian to a far-from-equilibrium quantummany-body system and observe its time evolution. For several different interaction ranges, we determine the spatial and time-dependent correlations, extract the shape of the light coneandmeasure the velocity withwhichcorrelations propagate through the system. This work opens the possibility for studying a wide range of many-body dynamics in quantumsystems that are otherwise intractable. © 2014 Macmillan Publishers Limited. All rights reserved.
引用
收藏
页码:198 / +
页数:8
相关论文
共 30 条
[1]   Quantum communication through spin chain dynamics: an introductory overview [J].
Bose, Sougato .
CONTEMPORARY PHYSICS, 2007, 48 (01) :13-30
[2]   Lieb-robinson bounds and the generation of correlations and topological quantum order [J].
Bravyi, S. ;
Hastings, M. B. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)
[3]   Time dependence of correlation functions following a quantum quench [J].
Calabrese, P ;
Cardy, J .
PHYSICAL REVIEW LETTERS, 2006, 96 (13)
[4]   Light-cone-like spreading of correlations in a quantum many-body system [J].
Cheneau, Marc ;
Barmettler, Peter ;
Poletti, Dario ;
Endres, Manuel ;
Schauss, Peter ;
Fukuhara, Takeshi ;
Gross, Christian ;
Bloch, Immanuel ;
Kollath, Corinna ;
Kuhr, Stefan .
NATURE, 2012, 481 (7382) :484-487
[5]   Colloquium: Area laws for the entanglement entropy [J].
Eisert, J. ;
Cramer, M. ;
Plenio, M. B. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (01) :277-306
[6]   Breakdown of Quasilocality in Long-Range Quantum Lattice Models [J].
Eisert, Jens ;
van den Worm, Mauritz ;
Manmana, Salvatore R. ;
Kastner, Michael .
PHYSICAL REVIEW LETTERS, 2013, 111 (26)
[7]   Nonequilibrium dynamics of arbitrary-range Ising models with decoherence: An exact analytic solution [J].
Foss-Feig, Michael ;
Hazzard, Kaden R. A. ;
Bollinger, John J. ;
Rey, Ana Maria .
PHYSICAL REVIEW A, 2013, 87 (04)
[8]  
Gong Z.-X., 2014, PERSISTENCE LOCALITY
[9]   Prethermalization and dynamic phase transition in an isolated trapped ion spin chain [J].
Gong, Zhe-Xuan ;
Duan, L-M .
NEW JOURNAL OF PHYSICS, 2013, 15
[10]   An area law for one-dimensional quantum systems [J].
Hastings, M. B. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,