A deficit scaling algorithm for the minimum flow problem

被引:7
作者
Ciupala, Laura [1 ]
机构
[1] Transilvania Univ Brasov, Fac Math & Informat, Dept Comp Sci, Brasov, Romania
来源
SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES | 2006年 / 31卷 / 3期
关键词
network flow; network algorithms; minimum flow problem; scaling technique;
D O I
10.1007/BF02703378
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we develop a new preflow algorithm for the minimum flow problem, called deficit scaling algorithm, This is a special implementation of the generic preflow algorithm for the minimum How problem developed by Ciurea and Ciupala earlier. The bottleneck operation in the generic preflow algorithm is the number of noncancelling pulls. Using the scaling technique (i.e. selecting the active nodes with sufficiently large deficits), we reduce the number of noncancelling pulls to O(n(2) log (c) over bar) and obtain an O(nm + n(2) log (c) over bar) algorithm.
引用
收藏
页码:227 / 233
页数:7
相关论文
共 50 条
  • [21] Solving the minimum flow problem with interval bounds and flows
    Ghiyasvand, Mehdi
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2012, 37 (06): : 665 - 674
  • [22] An Improved Parameterized Algorithm for the Minimum Node Multiway Cut Problem
    Jianer Chen
    Yang Liu
    Songjian Lu
    Algorithmica, 2009, 55 : 1 - 13
  • [23] An Improved Parameterized Algorithm for the Minimum Node Multiway Cut Problem
    Chen, Jianer
    Liu, Yang
    Lu, Songjian
    ALGORITHMICA, 2009, 55 (01) : 1 - 13
  • [24] A FAST ALGORITHM FOR THE GENERALIZED PARAMETRIC MINIMUM CUT PROBLEM AND APPLICATIONS
    GUSFIELD, D
    MARTEL, C
    ALGORITHMICA, 1992, 7 (5-6) : 499 - 519
  • [25] A network flow approach to the minimum common integer partition problem
    Zhao, Wenbo
    Zhang, Peng
    Jiang, Tao
    THEORETICAL COMPUTER SCIENCE, 2006, 369 (1-3) : 456 - 462
  • [26] Decreasing path algorithm for minimum flows. Dynamic tree implementations
    Georgescu, Oana
    Ciurea, Eleonor
    PROCEEDINGS OF THE 12TH WSEAS INTERNATIONAL CONFERENCE ON COMPUTERS , PTS 1-3: NEW ASPECTS OF COMPUTERS, 2008, : 235 - +
  • [27] Minimum flow problem on network flows with time-varying bounds
    Fathabadi, H. Salehi
    Khodayifar, S.
    Raayatpanah, M. A.
    APPLIED MATHEMATICAL MODELLING, 2012, 36 (09) : 4414 - 4421
  • [28] A least-squares minimum-cost network flow algorithm
    Balaji Gopalakrishnan
    Seunghyun Kong
    Earl Barnes
    Ellis L. Johnson
    Joel S. Sokol
    Annals of Operations Research, 2011, 186 : 119 - 140
  • [29] A strongly polynomial cut canceling algorithm for minimum cost submodular flow
    Iwata, S
    McCormick, ST
    Shigeno, M
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2005, 19 (02) : 304 - 320
  • [30] A faster strongly polynomial time algorithm to solve the minimum cost tension problem
    Ghiyasvand, Mehdi
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (01) : 203 - 217