Upper Bounds for the Euclidean Operator Radius and Applications

被引:3
作者
Dragomir, S. S. [1 ]
机构
[1] Victoria Univ, Res Grp Math Inequal & Applicat, Sch Sci & Engn, Melbourne, Vic 8001, Australia
关键词
D O I
10.1155/2008/472146
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main aim of the present paper is to establish various sharp upper bounds for the Euclidean operator radius of an n-tuple of bounded linear operators on a Hilbert space. The tools used are provided by several generalizations of Bessel inequality due to Boas-Bellman, Bombieri, and the author. Natural applications for the norm and the numerical radius of bounded linear operators on Hilbert spaces are also given. Copyright (C) 2008 S. S. Dragomir.
引用
收藏
页数:20
相关论文
共 16 条
  • [1] [Anonymous], 1993, MATH ITS APPL E EURO
  • [2] [Anonymous], GRADUATE TEXTS MATH
  • [3] Bellman R., 1944, B AM MATH SOC, V50, P517, DOI DOI 10.1090/S0002-9904-1944-08180-9
  • [4] A general moment problem
    Boas, RP
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1941, 63 : 361 - 370
  • [5] Bombieri E., 1971, Acta Arith, V18, P401, DOI [10.4064/aa-18-1-401-404, DOI 10.4064/AA-18-1-401-404]
  • [6] Buzano M.L., 1974, REND SEM MAT U POLIT, V31, P405
  • [7] Dragomir S.S., 1992, STUDIA U BABE BOLYAI, V37, P77
  • [8] Dragomir S.S., 2005, LIBERTAS MATH, V25, P13
  • [9] DRAGOMIR S. S., 2004, J INDONES MATH SOC, V10, P91
  • [10] Dragomir S.S., 2005, ADV INEQUALITIES SCH