Centralizing maps on invertible or singular matrices over division rings

被引:28
作者
Liu, Cheng-Kai [1 ]
机构
[1] Natl Changhua Univ Educ, Dept Math, Changhua 500, Taiwan
关键词
Centralizing maps; Functional identities; Invertible matrices; Singular matrices; COMMUTING MAPS; PRIME-RINGS; FUNCTIONAL IDENTITIES; TRIANGULAR ALGEBRAS; INVOLUTION; MAPPINGS;
D O I
10.1016/j.laa.2013.10.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let D be a division ring and let M-n(D) be the ring of all n x n matrices over D with center Z, where n >= 2 is an integer. We describe the additive map f : M-n(D) -> M-n(D) such that f(x)x - xf(x) is an element of Z for all invertible (singular) x is an element of M-n(D). (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:318 / 324
页数:7
相关论文
共 24 条
[1]   AN APPLICATION OF LOCAL MULTIPLIERS TO CENTRALIZING MAPPINGS OF C-ASTERISK-ALGEBRAS [J].
ARA, P ;
MATHIEU, M .
QUARTERLY JOURNAL OF MATHEMATICS, 1993, 44 (174) :129-138
[2]   On functional identities in prime rings with involution [J].
Beidar, KI ;
Martindale, WS .
JOURNAL OF ALGEBRA, 1998, 203 (02) :491-532
[3]   The lower socle and finite rank elementary operators [J].
Bresar, M ;
Eremita, D .
COMMUNICATIONS IN ALGEBRA, 2003, 31 (03) :1485-1497
[4]   CENTRALIZING MAPPINGS AND DERIVATIONS IN PRIME-RINGS [J].
BRESAR, M .
JOURNAL OF ALGEBRA, 1993, 156 (02) :385-394
[5]   CENTRALIZING MAPS IN PRIME-RINGS WITH INVOLUTION [J].
BRESAR, M ;
MARTINDALE, WS ;
MIERS, CR .
JOURNAL OF ALGEBRA, 1993, 161 (02) :342-357
[6]   CENTRALIZING MAPPINGS ON VONNEUMANN-ALGEBRAS [J].
BRESAR, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 111 (02) :501-510
[7]   Commuting maps on Lie ideals [J].
Bresar, M ;
Miers, CR .
COMMUNICATIONS IN ALGEBRA, 1995, 23 (14) :5539-5553
[8]  
Bresar M., 2007, FUNCTIONAL IDENTITIE
[9]   Commuting maps of triangular algebras [J].
Cheung, WS .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 63 :117-127
[10]   k-Commuting maps on triangular algebras [J].
Du, Yiqiu ;
Wang, Yu .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (05) :1367-1375