A statistical approach to the cauchy problem for the Laplace equation

被引:8
作者
Golubev, G [1 ]
Khasminskii, R [1 ]
机构
[1] Univ Aix Marseille 1, Ctr Math & Informat, F-13453 Marseille, France
来源
STATE OF THE ART IN PROBABILITY AND STATISTICS: FESTSCHRIFT FOR WILLEM R VAN ZWET | 2001年 / 36卷
关键词
ill-posed problems; statistical approach; asymptotically minimax estimator;
D O I
10.1214/lnms/1215090081
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the problem of estimating an unknown solution of the Cauchy problem for the Laplace equation, with L-2-norm loss, when the initial conditions are observed in a white Gaussian noise with a small spectral density. It is shown in particular that asymptotically minimax estimators are as a rule nonlinear.
引用
收藏
页码:419 / 433
页数:15
相关论文
共 11 条
[1]  
[Anonymous], 1977, SOLUTION ILL POSED P
[2]  
[Anonymous], 1968, SER DETECTION ESTIMA
[3]   RENORMALIZATION EXPONENTS AND OPTIMAL POINTWISE RATES OF CONVERGENCE [J].
DONOHO, DL ;
LOW, MG .
ANNALS OF STATISTICS, 1992, 20 (02) :944-970
[4]  
Engl H.W., 1987, Inverse and ill-posed problems
[5]  
GOLUBEV GK, 1996, MATH METHODS STAT, V5, P357
[6]  
Lavrentiev M.M., 1967, SOME IMPROPERLY POSE
[7]   Statistical inverse estimation in Hilbert scales [J].
Mair, BA ;
Ruymgaart, FH .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1996, 56 (05) :1424-1444
[8]  
Pinsker M. S., 1980, Problems of Information Transmission, V16, P120
[9]  
SUDAKOV VN, 1964, SOV MATH DOKL, V157, P1094
[10]  
SULLIVAN FO, 1996, STAT SCI, V1, P502