Adaptive techniques in electrical impedance tomography reconstruction

被引:9
|
作者
Li, Taoran [1 ]
Isaacson, David [2 ]
Newell, Jonathan C. [3 ]
Saulnier, Gary J. [1 ]
机构
[1] Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, Troy, NY 12180 USA
[2] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA
[3] Rensselaer Polytech Inst, Dept Biomed Engn, Troy, NY 12180 USA
关键词
electrical impedance tomography; adaptive image reconstruction; Kaczmarz method; optimal current patterns; reconstruction accuracy; MESH REFINEMENT; EIT;
D O I
10.1088/0967-3334/35/6/1111
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We present an adaptive algorithm for solving the inverse problem in electrical impedance tomography. To strike a balance between the accuracy of the reconstructed images and the computational efficiency of the forward and inverse solvers, we propose to combine an adaptive mesh refinement technique with the adaptive Kaczmarz method. The iterative algorithm adaptively generates the optimal current patterns and a locally-refined mesh given the conductivity estimate and solves for the unknown conductivity distribution with the block Kaczmarz update step. Simulation and experimental results with numerical analysis demonstrate the accuracy and the efficiency of the proposed algorithm.
引用
收藏
页码:1111 / 1124
页数:14
相关论文
共 50 条
  • [41] LEARNING SPARSIFYING TRANSFORMS FOR IMAGE RECONSTRUCTION IN ELECTRICAL IMPEDANCE TOMOGRAPHY
    Yang, Kaiyi
    Borijindargoon, Narong
    Ng, Boon Poh
    Ravishankar, Saiprasad
    Wen, Bihan
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1405 - 1409
  • [42] Reconstruction of piecewise constant layered conductivities in electrical impedance tomography
    Garde, Henrik
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 45 (09) : 1118 - 1133
  • [43] MONOTONICITY-BASED SHAPE RECONSTRUCTION IN ELECTRICAL IMPEDANCE TOMOGRAPHY
    Harrach, Bastian
    Ullrich, Marcel
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (06) : 3382 - 3403
  • [44] RBF neural network image reconstruction for electrical impedance tomography
    Wang, C
    Lang, R
    Wang, HX
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 2549 - 2552
  • [45] Shape Reconstruction Using Boolean Operations in Electrical Impedance Tomography
    Liu, Dong
    Gu, Danping
    Smyl, Danny
    Deng, Jiansong
    Du, Jiangfeng
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (09) : 2954 - 2964
  • [46] TSS-ConvNet for electrical impedance tomography image reconstruction
    Ameen, Ayman A.
    Sack, Achim
    Poeschel, Thorsten
    PHYSIOLOGICAL MEASUREMENT, 2024, 45 (04)
  • [47] A Conditional Diffusion Model for Electrical Impedance Tomography Image Reconstruction
    Shi, Shuaikai
    Kang, Ruiyuan
    Liatsis, Panos
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [48] Clustering-Based Reconstruction Algorithm for Electrical Impedance Tomography
    Zhu, Shiyuan
    Li, Kun
    Yue, Shihong
    Liu, Liping
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [49] Super-resolution reconstruction of electrical impedance tomography images
    Borsoi, Ricardo Augusto
    Ceballos Aya, Julio Cesar
    Costa, Guilherme Holsbach
    Moreira Bermudez, Jose Carlos
    COMPUTERS & ELECTRICAL ENGINEERING, 2018, 69 : 1 - 13
  • [50] A reconstruction algorithm based on wavelet network in electrical impedance tomography
    Xu, GZ
    Wu, Q
    Yang, QX
    Li, Y
    Yan, WL
    PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 : 1435 - 1438