Adaptive techniques in electrical impedance tomography reconstruction

被引:9
|
作者
Li, Taoran [1 ]
Isaacson, David [2 ]
Newell, Jonathan C. [3 ]
Saulnier, Gary J. [1 ]
机构
[1] Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, Troy, NY 12180 USA
[2] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA
[3] Rensselaer Polytech Inst, Dept Biomed Engn, Troy, NY 12180 USA
关键词
electrical impedance tomography; adaptive image reconstruction; Kaczmarz method; optimal current patterns; reconstruction accuracy; MESH REFINEMENT; EIT;
D O I
10.1088/0967-3334/35/6/1111
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We present an adaptive algorithm for solving the inverse problem in electrical impedance tomography. To strike a balance between the accuracy of the reconstructed images and the computational efficiency of the forward and inverse solvers, we propose to combine an adaptive mesh refinement technique with the adaptive Kaczmarz method. The iterative algorithm adaptively generates the optimal current patterns and a locally-refined mesh given the conductivity estimate and solves for the unknown conductivity distribution with the block Kaczmarz update step. Simulation and experimental results with numerical analysis demonstrate the accuracy and the efficiency of the proposed algorithm.
引用
收藏
页码:1111 / 1124
页数:14
相关论文
共 50 条
  • [31] Reconstruction of Small Inclusions in Electrical Impedance Tomography Problems
    Fang, Xiaoping
    Deng, Youjun
    Chen, Xiaohong
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2019, 9 (02) : 280 - 294
  • [32] OPTIMIZING ELECTRODE POSITIONS IN ELECTRICAL IMPEDANCE TOMOGRAPHY
    Hyvonen, Nuutti
    Seppanen, Aku
    Staboulis, Stratos
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2014, 74 (06) : 1831 - 1851
  • [33] Inclusion boundary reconstruction and sensitivity analysis in electrical impedance tomography
    Ren, Shangjie
    Soleimani, Manuchehr
    Xu, Yaoyuan
    Dong, Feng
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2018, 26 (07) : 1037 - 1061
  • [34] A genetic algorithm approach to image reconstruction in electrical impedance tomography
    Olmi, R
    Bini, M
    Priori, S
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2000, 4 (01) : 83 - 88
  • [35] Reconstruction of layered biological tissues via electrical impedance tomography
    Dolgin, Madlena
    Einziger, Pinchas D.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53 (12) : 2464 - 2471
  • [36] Influence of Boundary Deformation on Image Reconstruction in Electrical Impedance Tomography
    Wang, Lei
    Deng, Juan
    Zhao, Shu
    Wang, Hong
    Sha, Hong
    Wang, Yan
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2020, 10 (10) : 2274 - 2278
  • [37] Patch-based sparse reconstruction for electrical impedance tomography
    Wang, Qi
    Zhang, Pengcheng
    Wang, Jianming
    Chen, Qingliang
    Lian, Zhijie
    Li, Xiuyan
    Sun, Yukuan
    Duan, Xiaojie
    Cui, Ziqiang
    Sun, Benyuan
    Wang, Huaxiang
    SENSOR REVIEW, 2017, 37 (03) : 257 - 269
  • [38] New image reconstruction method in dynamic electrical impedance tomography
    Hou, WD
    Mo, WL
    ELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY III, 2002, 4925 : 1 - 4
  • [39] Advances of deep learning in electrical impedance tomography image reconstruction
    Zhang, Tao
    Tian, Xiang
    Liu, XueChao
    Ye, JianAn
    Fu, Feng
    Shi, XueTao
    Liu, RuiGang
    Xu, CanHua
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [40] Image Reconstruction Based on Structured Sparsity for Electrical Impedance Tomography
    Wang, Qi
    He, Jing
    Wang, Jianming
    Li, Xiuyan
    Duan, Xiaojie
    2018 2ND INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND BIOINFORMATICS (ICBEB 2018), 2018, : 42 - 48