Adaptive techniques in electrical impedance tomography reconstruction

被引:9
|
作者
Li, Taoran [1 ]
Isaacson, David [2 ]
Newell, Jonathan C. [3 ]
Saulnier, Gary J. [1 ]
机构
[1] Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, Troy, NY 12180 USA
[2] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA
[3] Rensselaer Polytech Inst, Dept Biomed Engn, Troy, NY 12180 USA
关键词
electrical impedance tomography; adaptive image reconstruction; Kaczmarz method; optimal current patterns; reconstruction accuracy; MESH REFINEMENT; EIT;
D O I
10.1088/0967-3334/35/6/1111
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We present an adaptive algorithm for solving the inverse problem in electrical impedance tomography. To strike a balance between the accuracy of the reconstructed images and the computational efficiency of the forward and inverse solvers, we propose to combine an adaptive mesh refinement technique with the adaptive Kaczmarz method. The iterative algorithm adaptively generates the optimal current patterns and a locally-refined mesh given the conductivity estimate and solves for the unknown conductivity distribution with the block Kaczmarz update step. Simulation and experimental results with numerical analysis demonstrate the accuracy and the efficiency of the proposed algorithm.
引用
收藏
页码:1111 / 1124
页数:14
相关论文
共 50 条
  • [21] Block-sparse Reconstruction for Electrical Impedance Tomography
    Wang Qi
    Zhang Pengcheng
    Wang Jianming
    Li Xiuyan
    Lian Zhijie
    Chen Qingliang
    Chen Tongyun
    Chen Xiaojing
    He Jing
    Duan Xiaojie
    Wang Huaxiang
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (03) : 676 - 682
  • [22] A new image reconstruction method for electrical impedance tomography
    Hou, WD
    Mo, WL
    BIOMEDICAL PHOTONICS AND OPTOELECTRONIC IMAGING, 2000, 4224 : 64 - 67
  • [23] Sparsity reconstruction in electrical impedance tomography: An experimental evaluation
    Gehre, Matthias
    Kluth, Tobias
    Lipponen, Antti
    Jin, Bangti
    Seppanen, Aku
    Kaipio, Jari P.
    Maass, Peter
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (08) : 2126 - 2136
  • [24] Simultaneous Reconstruction of Conductivity and Permittivity in Electrical Impedance Tomography
    Zhu, Zengyan
    Wang, Yutao
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 3211 - 3215
  • [25] Reconstruction and Imaging of Intracerebral Hemorrhage by Electrical Impedance Tomography
    Wang, L.
    Liu, W. B.
    Yu, X.
    Dong, X. Z.
    Gao, F.
    2017 10TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI), 2017,
  • [26] Image reconstruction with discontinuous coefficient in electrical impedance tomography
    Rymarczyk, Tomasz
    Filipowicz, Stefan F.
    Sikora, Jan
    PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (05): : 149 - 151
  • [27] New regularized image reconstruction for electrical impedance tomography
    Hou, WD
    Mo, YL
    IMAGE MATCHING AND ANALYSIS, 2001, 4552 : 286 - 291
  • [28] Measurement Methods and Image Reconstruction in Electrical Impedance Tomography
    Filipowicz, Stefan F.
    Rymarczyk, Tomasz
    PRZEGLAD ELEKTROTECHNICZNY, 2012, 88 (06): : 247 - 250
  • [29] Directional Algebraic Reconstruction Technique for Electrical Impedance Tomography
    Kim, Ji Hoon
    Choi, Bong Yeol
    Ijaz, Umer Zeeshan
    Kim, Bong Seok
    Kim, Sin
    Kim, Kyung Youn
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2009, 54 (04) : 1439 - 1447
  • [30] Lobe based image reconstruction in Electrical Impedance Tomography
    Schullcke, Benjamin
    Gong, Bo
    Krueger-Ziolek, Sabine
    Tawhai, Merryn
    Adler, Andy
    Mueller-Lisse, Ullrich
    Moeller, Knut
    MEDICAL PHYSICS, 2017, 44 (02) : 426 - 436