A novel statistical analysis and interpretation of flow cytometry data

被引:10
|
作者
Banks, H. T. [1 ,2 ]
Kapraun, D. F. [1 ,2 ]
Thompson, W. Clayton [1 ,2 ]
Peligero, Cristina [3 ]
Argilaguet, Jordi [3 ]
Meyerhans, Andreas [3 ]
机构
[1] N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
[2] N Carolina State Univ, Ctr Quantitat Sci Biomed, Raleigh, NC 27695 USA
[3] Univ Pompeu Fabra, Dept Expt & Hlth Sci, ICREA Infect Biol Lab, Barcelona 08003, Spain
基金
美国国家科学基金会;
关键词
immunology; flow cytometry; cyton models; mathematical and statistical models; label dynamics; parameter estimation; cellular models; MEASURING LYMPHOCYTE-PROLIFERATION; IN-VITRO; DIVISION; MODEL; RESPONSES; DYNAMICS; VIVO;
D O I
10.1080/17513758.2013.812753
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
A recently developed class of models incorporating the cyton model of population generation structure into a conservation-based model of intracellular label dynamics is reviewed. Statistical aspects of the data collection process are quantified and incorporated into a parameter estimation scheme. This scheme is then applied to experimental data for PHA-stimulated CD4+T and CD8+T cells collected from two healthy donors. This novel mathematical and statistical framework is shown to form the basis for accurate, meaningful analysis of cellular behaviour for a population of cells labelled with the dye carboxyfluorescein succinimidyl ester and stimulated to divide.
引用
收藏
页码:96 / 132
页数:37
相关论文
共 50 条
  • [31] CytoTree: an R/Bioconductor package for analysis and visualization of flow and mass cytometry data
    Yuting Dai
    Aining Xu
    Jianfeng Li
    Liang Wu
    Shanhe Yu
    Jun Chen
    Weili Zhao
    Xiao-Jian Sun
    Jinyan Huang
    BMC Bioinformatics, 22
  • [32] Automated Analysis of Clinical Flow Cytometry Data A Chronic Lymphocytic Leukemia Illustration
    Scheuermann, Richard H.
    Bui, Jack
    Wang, Huan-You
    Qian, Yu
    CLINICS IN LABORATORY MEDICINE, 2017, 37 (04) : 931 - +
  • [33] High-Throughput Analysis of Clinical Flow Cytometry Data by Automated Gating
    Lee, Hunjoong
    Sun, Yongliang
    Patti-Diaz, Lisa
    Hedrick, Michael
    Ehrhardt, Anka G.
    BIOINFORMATICS AND BIOLOGY INSIGHTS, 2019, 13
  • [34] Web servlet-assisted, dial-in flow cytometry data analysis
    Battye, FL
    CYTOMETRY, 2001, 43 (02): : 143 - 149
  • [35] Best practices for instrument settings and raw data analysis in plant flow cytometry
    Koutecky, Petr
    Smith, Tyler
    Loureiro, Joao
    Kron, Paul
    CYTOMETRY PART A, 2023, 103 (12) : 953 - 966
  • [36] A novel multiparametric approach for analysis of cytoplasmic immunoglobulin light chains by flow cytometry
    Chang, CC
    Schur, BC
    Kampalath, B
    Lindholm, P
    Becker, CG
    Vesole, DH
    MODERN PATHOLOGY, 2001, 14 (10) : 1015 - 1021
  • [37] Flow cytometry data analysis of CD34+ /CD133
    Jaime-Perez, Jose C.
    Villarreal-Villarreal, Cesar D.
    Vazquez-Garza, Eduardo
    Mendez-Ramirez, Nereida
    Salazar-Riojas, Rosario
    Gomez-Almaguer, David
    DATA IN BRIEF, 2016, 7 : 1151 - 1155
  • [38] The impact of delayed sample handling and type of anticoagulant on the interpretation of dysplastic signs detected by flow cytometry
    Karai, Bettina
    Miltenyi, Zsofia
    Gergely, Lajos
    Szaraz-Szeles, Marianna
    Kappelmayer, Janos
    Hevessy, Zsuzsanna
    BIOCHEMIA MEDICA, 2018, 28 (02)
  • [39] CYTOPT: OPTIMAL TRANSPORT WITH DOMAIN ADAPTATION FOR INTERPRETING FLOW CYTOMETRY DATA
    Freulon, P. A. U. L.
    Bigot, J. E. R. E. M. I. E.
    Hejblum, Boris p.
    ANNALS OF APPLIED STATISTICS, 2023, 17 (02) : 1086 - 1104
  • [40] Fully Automatic Classification of Flow Cytometry Data
    Piotrowski, Bartosz Pawel
    Kursa, Miron Bartosz
    FOUNDATIONS OF INTELLIGENT SYSTEMS (ISMIS 2018), 2018, 11177 : 3 - 12