Global gradient estimates for the p(•)-Laplacian

被引:45
|
作者
Diening, L.
Schwarzacher, S.
机构
[1] Theresienstr. 39
关键词
Nonlinear Calderon-Zygmund theory; Variable exponents; Generalized Lebesgue and Sobolev spaces; Electrorheological fluids; MAXIMAL-FUNCTION; SPACES; INTEGRABILITY; FUNCTIONALS; REGULARITY; OPERATORS;
D O I
10.1016/j.na.2014.04.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider Calderon-Zygmund type estimates for the non-homogeneous p(center dot)-Laplacian system -div(| Du|(p(center dot)-2Du)) = -div(| G|(p(center dot)-2)G), where p is a variable exponent. We show that |G| p(center dot)epsilon L-q(R-n) boolean AND L-1(R-n) implies |Du|(p(center dot)) epsilon L-q(R-n) boolean AND L-1(R-n) for any q >= 1. We also prove local estimates independent of the size of the domain and introduce new techniques to variable analysis. The paper is an extension of the local estimates of Acerbi-Mingione (2005). (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:70 / 85
页数:16
相关论文
共 50 条