Global gradient estimates for the p(•)-Laplacian

被引:46
作者
Diening, L.
Schwarzacher, S.
机构
[1] D-80333 Munich
关键词
Nonlinear Calderon-Zygmund theory; Variable exponents; Generalized Lebesgue and Sobolev spaces; Electrorheological fluids; MAXIMAL-FUNCTION; SPACES; INTEGRABILITY; FUNCTIONALS; REGULARITY; OPERATORS;
D O I
10.1016/j.na.2014.04.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider Calderon-Zygmund type estimates for the non-homogeneous p(center dot)-Laplacian system -div(| Du|(p(center dot)-2Du)) = -div(| G|(p(center dot)-2)G), where p is a variable exponent. We show that |G| p(center dot)epsilon L-q(R-n) boolean AND L-1(R-n) implies |Du|(p(center dot)) epsilon L-q(R-n) boolean AND L-1(R-n) for any q >= 1. We also prove local estimates independent of the size of the domain and introduce new techniques to variable analysis. The paper is an extension of the local estimates of Acerbi-Mingione (2005). (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:70 / 85
页数:16
相关论文
共 30 条
[1]  
Acerbi E, 2005, J REINE ANGEW MATH, V584, P117
[2]   Regularity results for a class of functionals with non-standard growth [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) :121-140
[3]  
[Anonymous], 2001, Differential Integral Equations
[4]  
[Anonymous], 1997, Differ. Uravn.
[5]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[6]  
Cruz-Uribe D, 2006, ANN ACAD SCI FENN-M, V31, P239
[7]  
Cruz-Uribe D, 2003, ANN ACAD SCI FENN-M, V28, P223
[8]   ON THE HIGHER INTEGRABILITY OF THE GRADIENT OF WEAK SOLUTIONS OF CERTAIN DEGENERATE ELLIPTIC-SYSTEMS [J].
DIBENEDETTO, E ;
MANFREDI, J .
AMERICAN JOURNAL OF MATHEMATICS, 1993, 115 (05) :1107-1134
[9]  
Diening L, 2004, MATH INEQUAL APPL, V7, P245
[10]   Lq theory for a generalized Stokes System [J].
Diening, L. ;
Kaplicky, P. .
MANUSCRIPTA MATHEMATICA, 2013, 141 (1-2) :333-361