The surface of ZnS and PbS has been modified by interfacing PbS on ZnS and ZnS on PbS nanoparticles. This produced core-shell nanocomposites ZnS/PbS and PbS/ZnS with tunable electronic properties. In both structures PbS particles are present in cubic form with all average diameter of about 6 nm. The addition of Pb2+ (>= 3 x 10(-4) mol dm(-3)) to Q-ZnS (1.5 x 10(-4) mol cm(-3)) in the basic pH range produces size-quantized fluorescent PbS particles coated by metal hydroxides. In these particles the relaxation kinetics of charge carriers has been followed using a picosecond single-photon counting technique. At <= 1.5 x 10(-4) mol dm(-3) Pb2+ an interfacial relaxation of charge from ZnS to PbS phase could be observed in subnanosecond time domain. An increase in [Pb2+] from 2 x 10(-4) to 1 x 10(-3) mol dm(-3) enhanced the average emission lifetime florin 9.4 to 19.4 ns. Composite PbS/ZnS particles are produced at high [ZnS] only. These particles had emission lifetime in mu s time range. The extent of charge separation and the dynamics of charge carriers could be manipulated by the surface modification of these nanostructures. (c) 2005 Elsevier Inc. All rights reserved.
机构:
UNIV CALIF BERKELEY, LAWRENCE BERKELEY NATL LAB, DIV MAT SCI, BERKELEY, CA 94720 USAUNIV CALIF BERKELEY, LAWRENCE BERKELEY NATL LAB, DIV MAT SCI, BERKELEY, CA 94720 USA
机构:
UNIV CALIF BERKELEY, LAWRENCE BERKELEY NATL LAB, DIV MAT SCI, BERKELEY, CA 94720 USAUNIV CALIF BERKELEY, LAWRENCE BERKELEY NATL LAB, DIV MAT SCI, BERKELEY, CA 94720 USA