Remaining useful life prediction of lithium-ion battery using a novel health indicator

被引:23
|
作者
Wang, Ranran [1 ]
Feng, Hailin [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, 266 Xifeng Rd, Xian 710126, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Box‐ Cox transformation; health indicator (HI); lithium‐ ion battery (LIB); relevance vector machine (RVM); remaining useful life (RUL) prediction; PROGNOSTICS; MODEL; STATE; OPTIMIZATION;
D O I
10.1002/qre.2792
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Remaining useful life (RUL) prediction plays a significant role in the health prognostic of lithium-ion batteries (LIBs). The capacity or internal resistance is commonly used to quantify degradation process and predict RUL of LIB, but those two indicators are difficult to be obtained due to complex operational conditions and high costs, respectively. To address this issue, we extract a novel health indicator (HI) from the battery current profiles that can be directly measured online. Furthermore, the indicator is optimized by Box-Cox transformation and evaluated by correlation analysis for degradation modeling accurately. Finally, relevance vector machine (RVM) algorithm is utilized to make a probabilistic prediction for battery RUL based on the extracted HI. The correlation analysis verifies the effectiveness of the novel HI, and comparative experiments demonstrate the proposed method can predict RUL of LIB more accurately.
引用
收藏
页码:1232 / 1243
页数:12
相关论文
共 50 条
  • [1] Prediction of remaining useful life for lithium-ion battery with multiple health indicators
    Su, Chun
    Chen, Hongjing
    Wen, Zejun
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2021, 23 (01): : 176 - 183
  • [2] Remaining useful life prediction for lithium-ion batteries based on an integrated health indicator
    Sun, Yongquan
    Hao, Xueling
    Pecht, Michael
    Zhou, Yapeng
    MICROELECTRONICS RELIABILITY, 2018, 88-90 : 1189 - 1194
  • [3] Satellite Lithium-Ion Battery Remaining Cycle Life Prediction with Novel Indirect Health Indicator Extraction
    Liu, Datong
    Wang, Hong
    Peng, Yu
    Xie, Wei
    Liao, Haitao
    ENERGIES, 2013, 6 (08) : 3654 - 3668
  • [4] A novel health indicator for on-line lithium-ion batteries remaining useful life prediction
    Zhou, Yapeng
    Huang, Miaohua
    Chen, Yupu
    Tao, Ye
    JOURNAL OF POWER SOURCES, 2016, 321 : 1 - 10
  • [5] Lithium-ion battery remaining useful life prediction based on GRU-RNN
    Song, Yuchen
    Li, Lyu
    Peng, Yu
    Liu, Datong
    12TH INTERNATIONAL CONFERENCE ON RELIABILITY, MAINTAINABILITY, AND SAFETY (ICRMS 2018), 2018, : 317 - 322
  • [6] A new hybrid method for the prediction of the remaining useful life of a lithium-ion battery
    Chang, Yang
    Fang, Huajing
    Zhang, Yong
    APPLIED ENERGY, 2017, 206 : 1564 - 1578
  • [7] Remaining Useful Life Prediction for Lithium-Ion Battery: A Deep Learning Approach
    Ren, Lei
    Zhao, Li
    Hong, Sheng
    Zhao, Shiqiang
    Wang, Hao
    Zhang, Lin
    IEEE ACCESS, 2018, 6 : 50587 - 50598
  • [8] Novel Approach for Lithium-Ion Battery On-Line Remaining Useful Life Prediction Based on Permutation Entropy
    Chen, Luping
    Xu, Liangjun
    Zhou, Yilin
    ENERGIES, 2018, 11 (04)
  • [9] Accurate prediction of remaining useful life for lithium-ion battery using deep neural networks with memory features
    Tarar, Muhammad Osama
    Naqvi, Ijaz Haider
    Khalid, Zubair
    Pecht, Michal
    FRONTIERS IN ENERGY RESEARCH, 2023, 11
  • [10] A Novel Remaining Useful Life Prediction Method for Capacity Diving Lithium-Ion Batteries
    Gao, Kaidi
    Xu, Jingyun
    Li, Zuxin
    Cai, Zhiduan
    Jiang, Dongming
    Zeng, Aigang
    ACS OMEGA, 2022, 7 (30): : 26701 - 26714