Sparsity Based Feature Extraction for Kernel Minimum Squared Error

被引:0
作者
Jiang, Jiang [1 ]
Chen, Xi [2 ]
Gan, Haitao [3 ]
Sang, Nong [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Automat, Sci & Technol Multispectral Informat Proc Lab, Wuhan 430074, Peoples R China
[2] Hainan Power Grid, Informat & Telecommun Branch, Hainan 570203, Peoples R China
[3] Hangzhou Dianzi Univ, Sch Automat, Hangzhou 310018, Zhejiang, Peoples R China
来源
PATTERN RECOGNITION (CCPR 2014), PT I | 2014年 / 483卷
关键词
Pattern classification; Kernel MSE; sparsity; weighted; feature extraction; RECOGNITION; REGRESSION; MSE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel minimum squared error(KMSE) is well-known for its effectiveness and simplicity, yet it suffers from the drawback of efficiency when the size of training examples is large. Besides, most of the previous fast algorithms based on KMSE only consider classification problems with balanced data, when in real world imbalanced data are common. In this paper, we propose a weighted model based on sparsity for feature selection in kernel minimum squared error(KMSE). With our model, the computational burden of feature extraction is largely alleviated. Moreover, this model can cope with the class imbalance problem. Experimental results conducted on several benchmark datasets indicate the effectivity and efficiency of our method.
引用
收藏
页码:273 / 282
页数:10
相关论文
共 24 条
[1]  
[Anonymous], 1998, P 15 INT C MACHINE L
[2]   NESTA: A Fast and Accurate First-Order Method for Sparse Recovery [J].
Becker, Stephen ;
Bobin, Jerome ;
Candes, Emmanuel J. .
SIAM JOURNAL ON IMAGING SCIENCES, 2011, 4 (01) :1-39
[3]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[4]   Atomic decomposition by basis pursuit [J].
Chen, SSB ;
Donoho, DL ;
Saunders, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :33-61
[5]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[6]   For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution [J].
Donoho, DL .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (06) :797-829
[7]   Least angle regression - Rejoinder [J].
Efron, B ;
Hastie, T ;
Johnstone, I ;
Tibshirani, R .
ANNALS OF STATISTICS, 2004, 32 (02) :494-499
[8]  
Elad M, 2010, SPARSE AND REDUNDANT REPRESENTATIONS, P3, DOI 10.1007/978-1-4419-7011-4_1
[9]   PATHWISE COORDINATE OPTIMIZATION [J].
Friedman, Jerome ;
Hastie, Trevor ;
Hoefling, Holger ;
Tibshirani, Robert .
ANNALS OF APPLIED STATISTICS, 2007, 1 (02) :302-332
[10]   From few to many: Illumination cone models for face recognition under variable lighting and pose [J].
Georghiades, AS ;
Belhumeur, PN ;
Kriegman, DJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (06) :643-660