A review of multi-criteria optimization techniques for agricultural land use allocation

被引:120
作者
Kaim, Andrea [1 ]
Cord, Anna F. [1 ]
Volk, Martin [1 ]
机构
[1] UFZ Helmholtz Ctr Environm Res, Dept Computat Landscape Ecol, Permoserstr 15, D-04318 Leipzig, Germany
关键词
Agricultural land use allocation; Multi-criteria decision analysis (MCDA); Multi-criteria optimization; Stakeholder integration; Trade-off analysis; Constraint handling; TRADE-OFF ANALYSIS; ECOSYSTEM SERVICES; MULTIOBJECTIVE OPTIMIZATION; GENETIC ALGORITHM; DIFFERENTIAL EVOLUTION; DECISION-SUPPORT; BIODIVERSITY; CONSERVATION; MANAGEMENT; FRAMEWORK;
D O I
10.1016/j.envsoft.2018.03.031
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Optimal land use allocation with the intention of ecosystem services provision and biodiversity conservation is one of the key challenges in agricultural management. Optimization techniques have been especially prevalent for solving land use problems; however, there is no guideline supporting the selection of an appropriate method. To enhance the applicability of optimization techniques for real-world case studies, this study provides an overview of optimization methods used for targeting land use decisions in agricultural areas. We explore their relative abilities for the integration of stakeholders and the identification of ecosystem service trade-offs since these are especially pertinent to land use planners. Finally, we provide recommendations for the use of the different optimization methods. For example, scalarization methods (e.g., reference point methods, tabu search) are particularly useful for a priori or interactive stakeholder integration; whereas Pareto-based approaches (e.g., evolutionary algorithms) are appropriate for trade-off analyses and a posteriori stakeholder involvement. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:79 / 93
页数:15
相关论文
共 121 条
[1]  
Aarts E. H. L., 2003, LOCAL SEARCH COMBINA, P512
[2]  
Adams B. M., 2014, SAND20144633, P333
[3]  
Aerts JCJH, 2003, GEOGR ANAL, V35, P148, DOI 10.1111/j.1538-4632.2003.tb01106.x
[4]   Using simulated annealing for resource allocation [J].
Aerts, JCJH ;
Heuvelink, GBM .
INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2002, 16 (06) :571-587
[5]  
[Anonymous], MULTI CRITERIA ANALY
[6]   Multiple criteria land use analysis [J].
Antoine, J ;
Fischer, G ;
Makowski, M .
APPLIED MATHEMATICS AND COMPUTATION, 1997, 83 (2-3) :195-215
[7]   Cost-effective allocation of watershed management practices using a genetic algorithm [J].
Arabi, Mazdak ;
Govindaraju, Rao S. ;
Hantush, Mohamed M. .
WATER RESOURCES RESEARCH, 2006, 42 (10)
[8]   SWAT2000: current capabilities and research opportunities in applied watershed modelling [J].
Arnold, JG ;
Fohrer, N .
HYDROLOGICAL PROCESSES, 2005, 19 (03) :563-572
[9]  
Barnhart B., 2017, HANDLING PRACTICALIT, P1065, DOI [10.1145/3071178.3071244, DOI 10.1145/3071178.3071244]
[10]   Spatial land use trade-offs for maintenance of biodiversity, biofuel, and agriculture [J].
Behrman, Kathrine D. ;
Juenger, Thomas E. ;
Kiniry, James R. ;
Keitt, Timothy H. .
LANDSCAPE ECOLOGY, 2015, 30 (10) :1987-1999