AEC algorithm:: A heuristic approach to calculating density-based clustering Eps parameter

被引:0
|
作者
Gorawski, Marcin [1 ]
Malczok, Rafal [1 ]
机构
[1] Silesian Tech Univ, Inst Comp Sci, PL-44100 Gliwice, Poland
来源
ADVANCES IN INFORMATION SYSTEMS, PROCEEDINGS | 2006年 / 4243卷
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Spatial information processing is an active research field in database technology. Spatial databases store information about the position of individual objects in space [6]. Our current research is focused on providing an efficient caching structure for a telemetric data warehouse. We perform spatial objects clustering when creating levels of the structure. For this purpose we employ a density-based clustering algorithm. The algorithm requires an user-defined parameter Eps. As we cannot get the Eps from user for every level of the structure we propose a heuristic approach for calculating the Eps parameter. Automatic Eps Calculation (AEC) algorithm analyzes pairs of points defining two quantities: distance between the points and density of the stripe between the points. In this paper we describe in detail the algorithm operation and interpretation of the results. The AEC algorithm was implemented in one centralized and two distributed versions. Included test results present the algorithm correctness and efficiency against various datasets.
引用
收藏
页码:90 / 99
页数:10
相关论文
共 50 条
  • [21] Clustering with Missing Features: A Density-Based Approach
    Gao, Kun
    Khan, Hassan Ali
    Qu, Wenwen
    SYMMETRY-BASEL, 2022, 14 (01):
  • [22] Efficient Distributed Approach for Density-Based Clustering
    Laloux, Jean-Francois
    Le-Khac, Nhien-An
    Kechadi, M-Tahar
    2011 20TH IEEE INTERNATIONAL WORKSHOPS ON ENABLING TECHNOLOGIES: INFRASTRUCTURE FOR COLLABORATIVE ENTERPRISES (WETICE), 2011, : 145 - 150
  • [23] An Algorithm to Adaptive Determination of Density Threshold for Density-based Clustering
    Ke, Zhang
    Lei, Huang
    Yi, Chai
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 3929 - 3935
  • [24] A Density-based clustering algorithm suitable to various density dataset
    School of Software, Dalian University of Technology, Dalian 116621, China
    J. Comput. Inf. Syst., 2008, 6 (2473-2481):
  • [25] The SpectACl of Nonconvex Clustering: A Spectral Approach to Density-Based Clustering
    Hess, Sibylle
    Duivesteijn, Wouter
    Honysz, Philipp
    Morik, Katharina
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 3788 - 3795
  • [26] Video abstraction using density-based clustering algorithm
    Fereshteh Falah Chamasemani
    Lilly Suriani Affendey
    Norwati Mustapha
    Fatimah Khalid
    The Visual Computer, 2018, 34 : 1299 - 1314
  • [27] Video abstraction using density-based clustering algorithm
    Chamasemani, Fereshteh Falah
    Affendey, Lilly Suriani
    Mustapha, Norwati
    Khalid, Fatimah
    VISUAL COMPUTER, 2018, 34 (10): : 1299 - 1314
  • [28] An Improved BAT Algorithm Using Density-Based Clustering
    Al-Asadi, Samraa Adnan
    Al-Mamory, Safaa O.
    INTELIGENCIA ARTIFICIAL-IBEROAMERICAL JOURNAL OF ARTIFICIAL INTELLIGENCE, 2023, 26 (72): : 102 - 123
  • [29] A density-based clustering algorithm for the CYGNO data analysis
    Baracchini, E.
    Benussi, L.
    Bianco, S.
    Capoccia, C.
    Caponero, M.
    Cavoto, G.
    Cortez, A.
    Costa, I. A.
    Di Marco, E.
    D'Imperio, G.
    Dho, G.
    Lacoangeli, F.
    Maccarrone, G.
    Marafini, M.
    Mazzitelli, G.
    Messina, A.
    Nobrega, R. A.
    Orlandi, A.
    Paoletti, E.
    Passamonti, L.
    Petrucci, F.
    Piccolo, D.
    Pierluigi, D.
    Pinci, D.
    Renga, F.
    Rosatelli, F.
    Russo, A.
    Saviano, G.
    Tesauroc, R.
    Tomassini, S.
    JOURNAL OF INSTRUMENTATION, 2020, 15 (12)
  • [30] A GPU-Accelerated Density-Based Clustering Algorithm
    Loh, Woong-Kee
    Kim, Young-Kuk
    2014 IEEE FOURTH INTERNATIONAL CONFERENCE ON BIG DATA AND CLOUD COMPUTING (BDCLOUD), 2014, : 775 - 776