On the reality of the eigenvalues for a class of PT-symmetric oscillators

被引:115
作者
Shin, KC [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
D O I
10.1007/s00220-002-0706-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the eigenvalue problem -u(eta)(z) - [(iz)(m) + P(iz)]u(z) = with the boundary conditions that u(z) decays to zero as z tends to infinity along the rays arg z = -(pi)/(2) +/- (2pi)/(m+2), where P(z) = a(1)z(m-1) + a(2)z(m-2) + ... + a(m-1)z is a real polynomial and m greater than or equal to 2. We prove that if for some 1 less than or equal to j less than or equal to (m)/(2) we have (j - k)a(k) greater than or equal to 0 for all 1 less than or equal to k less than or equal to m - 1, then the eigenvalues are all positive real. We then sharpen this to a larger class of polynomial potentials. In particular, this implies that the eigenvalues are all positive real for the potentials alphaiz(3) + betaz(2) + gammaiz when alpha, beta, gamma is an element of R with alpha not equal 0 and alpha gamma greater than or equal to 0, and with the boundary conditions that u(z) decays to zero as z tends to infinity along the positive and negative real axes. This verifies a conjecture of Bessis and Zinn-Justin.
引用
收藏
页码:543 / 564
页数:22
相关论文
共 24 条
[1]   ANALYTIC CONTINUATION OF EIGENVALUE PROBLEMS [J].
BENDER, CM ;
TURBINER, A .
PHYSICS LETTERS A, 1993, 173 (06) :442-446
[2]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[3]   Quasi-exactly solvable quartic potential [J].
Bender, CM ;
Boettcher, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (14) :L273-L277
[4]   A class of exactly-solvable eigenvalue problems [J].
Bender, CM ;
Wang, QH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (46) :9835-9847
[5]   Numerical evidence that the perturbation expansion for a non-Hermitian PT-symmetric Hamiltonian is Stieltjes [J].
Bender, CM ;
Weniger, EJ .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (05) :2167-2183
[6]   Conjecture on the interlacing of zeros in complex Sturm-Liouville problems [J].
Bender, CM ;
Boettcher, S ;
Savage, VM .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (09) :6381-6387
[7]   Numerical simulations of PT-symmetric quantum field theories -: art. no. 085010 [J].
Bernard, C ;
Savage, VM .
PHYSICAL REVIEW D, 2001, 64 (08)
[8]   PERTURBATION-THEORY OF ODD ANHARMONIC-OSCILLATORS [J].
CALICETI, E ;
GRAFFI, S ;
MAIOLI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 75 (01) :51-66
[9]   Eigenvalues of complex Hamiltonians with PT-symmetry. I [J].
Delabaere, E ;
Pham, F .
PHYSICS LETTERS A, 1998, 250 (1-3) :25-28
[10]   Spectral analysis of the complex cubic oscillator [J].
Delabaere, E ;
Trinh, DT .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (48) :8771-8796