Draft genome assembly and annotation of Glycyrrhiza uralensis, a medicinal legume

被引:140
|
作者
Mochida, Keiichi [1 ,2 ,3 ]
Sakurai, Tetsuya [1 ,4 ]
Seki, Hikaru [1 ,5 ]
Yoshida, Takuhiro [1 ]
Takahagi, Kotaro [1 ,3 ]
Sawai, Satoru [1 ,5 ]
Uchiyama, Hiroshi [6 ]
Muranaka, Toshiya [1 ,5 ]
Saito, Kazuki [1 ,7 ]
机构
[1] RIKEN Ctr Sustainable Resource Sci, Tsurumi Ku, 1-7-22 Suehiro Cho, Yokohama, Kanagawa 2300045, Japan
[2] Okayama Univ, Inst Plant Sci & Resources, Chuo 2-20-1, Kurashiki, Okayama 7100046, Japan
[3] Yokohama City Univ, Kihara Inst Biol Res, Totsuka Ku, 641-12 Maioka Cho, Yokohama, Kanagawa 2440813, Japan
[4] Kochi Univ, Interdisciplinary Sci Unit, Multidisciplinary Sci Cluster, Res & Educ Fac, 200 Otsu, Nankoku, Kochi 7838502, Japan
[5] Osaka Univ, Grad Sch Engn, Dept Biotechnol, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan
[6] Nihon Univ, Dept Appl Biol Sci, Coll Bioresource Sci, 1866 Kameino, Fujisawa, Kanagawa, Japan
[7] Chiba Univ, Grad Sch Pharmaceut Sci, Chuo Ku, 1-8-1 Inohana, Chiba 2608675, Japan
基金
日本学术振兴会;
关键词
Glycyrrhiza uralensis; liquorice/licorice; genome sequence; PRJDB3943; synteny; flavonoid; P450; UDP-dependent glycosyltransferases; BIOACTIVE CONSTITUENTS; LOTUS-JAPONICUS; GENE; SEQUENCE; BIOSYNTHESIS; LICORICE; EVOLUTION; ALIGNMENT; IDENTIFICATION; PROVIDES;
D O I
10.1111/tpj.13385
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Chinese liquorice/licorice (Glycyrrhiza uralensis) is a leguminous plant species whose roots and rhizomes have been widely used as a herbal medicine and natural sweetener. Whole-genome sequencing is essential for gene discovery studies and molecular breeding in liquorice. Here, we report a draft assembly of the approximately 379-Mb whole-genome sequence of strain 308-19 of G. uralensis; this assembly contains 34 445 predicted protein-coding genes. Comparative analyses suggested well-conserved genomic components and collinearity of gene loci (synteny) between the genome of liquorice and those of other legumes such as Medicago and chickpea. We observed that three genes involved in isoflavonoid biosynthesis, namely, 2-hydroxyisoflavanone synthase (CYP93C), 2,7,4'-trihydroxyisoflavanone 4'-O-methyltransferase/isoflavone 4'-O-methyltransferase (HI4OMT) and isoflavone-7-O-methyltransferase (7-IOMT) formed a cluster on the scaffold of the liquorice genome and showed conserved microsynteny with Medicago and chickpea. Based on the liquorice genome annotation, we predicted genes in the P450 and UDP-dependent glycosyltransferase (UGT) superfamilies, some of which are involved in triterpenoid saponin biosynthesis, and characterised their gene expression with the reference genome sequence. The genome sequencing and its annotations provide an essential resource for liquorice improvement through molecular breeding and the discovery of useful genes for engineering bioactive components through synthetic biology approaches.
引用
收藏
页码:181 / 194
页数:14
相关论文
共 50 条
  • [41] Genome assembly and annotation of Meloidogyne enterolobii, an emerging parthenogenetic root-knot nematode
    Koutsovoulos, Georgios D.
    Poullet, Marine
    Elashry, Abdelnaser
    Kozlowski, Djampa K. L.
    Sallet, Erika
    Da Rocha, Martine
    Perfus-Barbeoch, Laetitia
    Martin-Jimenez, Cristina
    Frey, Juerg Ernst
    Ahrens, Christian H.
    Kiewnick, Sebastian
    Danchin, Etienne G. J.
    SCIENTIFIC DATA, 2020, 7 (01)
  • [42] De novo genome assembly and comparative annotation reveals metabolic versatility in cellulolytic bacteria from cropland and forest soils
    Yadav, Suman
    Reddy, Bhaskar
    Dubey, Suresh Kumar
    FUNCTIONAL & INTEGRATIVE GENOMICS, 2020, 20 (01) : 89 - 101
  • [43] Draft genome assembly of the invasive cane toad, Rhinella marina
    Edwards, Richard J.
    Tuipulotu, Daniel Enosi
    Amos, Timothy G.
    O'Meally, Denis
    Richardson, Mark F.
    Russell, Tonia L.
    Vallinoto, Marcelo
    Carneiro, Miguel
    Ferrand, Nuno
    Wilkins, Marc R.
    Sequeira, Fernando
    Rollins, Lee A.
    Holmes, Edward C.
    Shine, Richard
    White, Peter A.
    GIGASCIENCE, 2018, 7 (09):
  • [44] De novo Genome Assembly, Annotation, and SNP Identification of an Endangered Rockcress, Boechera fecunda
    Zhang, Hengyou
    Mitchell-Olds, Thomas
    Mujacic, Ibro
    Song, Bao-Hua
    FRONTIERS IN ECOLOGY AND EVOLUTION, 2020, 8
  • [45] Whole Genome Assembly and Annotation of Blackstripe Livebearer Poeciliopsis prolifica
    Zhang, Ying
    Reynoso, Yuridia
    Reznick, David
    Wang, Xu
    GENOME BIOLOGY AND EVOLUTION, 2023, 15 (11):
  • [46] Snow alga Sanguina aurantia as revealed through de novo genome assembly and annotation
    Raymond, Breanna B.
    Guenzi-Tiberi, Pierre
    Marechal, Eric
    Quarmby, Lynne M.
    G3-GENES GENOMES GENETICS, 2024, 14 (10):
  • [47] MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization
    Meng, Guanliang
    Li, Yiyuan
    Yang, Chentao
    Liu, Shanlin
    NUCLEIC ACIDS RESEARCH, 2019, 47 (11)
  • [48] Chromosome genome assembly and annotation of Adzuki Bean (Vigna angularis)
    Li, Wan
    He, Fanglei
    Wang, Xueyang
    Liu, Qi
    Zhang, Xiaoqing
    Yang, Zhiquan
    Fang, Chao
    Xiang, Hongtao
    SCIENTIFIC DATA, 2024, 11 (01)
  • [49] An advanced draft genome assembly of a desi type chickpea (Cicer arietinum L.)
    Parween, Sabiha
    Nawaz, Kashif
    Roy, Riti
    Pole, Anil K.
    Suresh, B. Venkata
    Misra, Gopal
    Jain, Mukesh
    Yadav, Gitanjali
    Parida, Swarup K.
    Tyagi, Akhilesh K.
    Bhatia, Sabhyata
    Chattopadhyay, Debasis
    SCIENTIFIC REPORTS, 2015, 5
  • [50] Genome assembly, annotation, and comparative analysis of the cattail Typha latifolia
    Widanagama, Shane D.
    Freeland, Joanna R.
    Xu, Xinwei
    Shafer, Aaron B. A.
    G3-GENES GENOMES GENETICS, 2022, 12 (02):