Draft genome assembly and annotation of Glycyrrhiza uralensis, a medicinal legume

被引:140
|
作者
Mochida, Keiichi [1 ,2 ,3 ]
Sakurai, Tetsuya [1 ,4 ]
Seki, Hikaru [1 ,5 ]
Yoshida, Takuhiro [1 ]
Takahagi, Kotaro [1 ,3 ]
Sawai, Satoru [1 ,5 ]
Uchiyama, Hiroshi [6 ]
Muranaka, Toshiya [1 ,5 ]
Saito, Kazuki [1 ,7 ]
机构
[1] RIKEN Ctr Sustainable Resource Sci, Tsurumi Ku, 1-7-22 Suehiro Cho, Yokohama, Kanagawa 2300045, Japan
[2] Okayama Univ, Inst Plant Sci & Resources, Chuo 2-20-1, Kurashiki, Okayama 7100046, Japan
[3] Yokohama City Univ, Kihara Inst Biol Res, Totsuka Ku, 641-12 Maioka Cho, Yokohama, Kanagawa 2440813, Japan
[4] Kochi Univ, Interdisciplinary Sci Unit, Multidisciplinary Sci Cluster, Res & Educ Fac, 200 Otsu, Nankoku, Kochi 7838502, Japan
[5] Osaka Univ, Grad Sch Engn, Dept Biotechnol, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan
[6] Nihon Univ, Dept Appl Biol Sci, Coll Bioresource Sci, 1866 Kameino, Fujisawa, Kanagawa, Japan
[7] Chiba Univ, Grad Sch Pharmaceut Sci, Chuo Ku, 1-8-1 Inohana, Chiba 2608675, Japan
基金
日本学术振兴会;
关键词
Glycyrrhiza uralensis; liquorice/licorice; genome sequence; PRJDB3943; synteny; flavonoid; P450; UDP-dependent glycosyltransferases; BIOACTIVE CONSTITUENTS; LOTUS-JAPONICUS; GENE; SEQUENCE; BIOSYNTHESIS; LICORICE; EVOLUTION; ALIGNMENT; IDENTIFICATION; PROVIDES;
D O I
10.1111/tpj.13385
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Chinese liquorice/licorice (Glycyrrhiza uralensis) is a leguminous plant species whose roots and rhizomes have been widely used as a herbal medicine and natural sweetener. Whole-genome sequencing is essential for gene discovery studies and molecular breeding in liquorice. Here, we report a draft assembly of the approximately 379-Mb whole-genome sequence of strain 308-19 of G. uralensis; this assembly contains 34 445 predicted protein-coding genes. Comparative analyses suggested well-conserved genomic components and collinearity of gene loci (synteny) between the genome of liquorice and those of other legumes such as Medicago and chickpea. We observed that three genes involved in isoflavonoid biosynthesis, namely, 2-hydroxyisoflavanone synthase (CYP93C), 2,7,4'-trihydroxyisoflavanone 4'-O-methyltransferase/isoflavone 4'-O-methyltransferase (HI4OMT) and isoflavone-7-O-methyltransferase (7-IOMT) formed a cluster on the scaffold of the liquorice genome and showed conserved microsynteny with Medicago and chickpea. Based on the liquorice genome annotation, we predicted genes in the P450 and UDP-dependent glycosyltransferase (UGT) superfamilies, some of which are involved in triterpenoid saponin biosynthesis, and characterised their gene expression with the reference genome sequence. The genome sequencing and its annotations provide an essential resource for liquorice improvement through molecular breeding and the discovery of useful genes for engineering bioactive components through synthetic biology approaches.
引用
收藏
页码:181 / 194
页数:14
相关论文
共 50 条
  • [21] Metabolomic and Pharmacologic Insights of Aerial and Underground Parts of Glycyrrhiza uralensis Fisch. ex DC. for Maximum Utilization of Medicinal Resources
    Jiang, Liang
    Akram, Waheed
    Luo, Biaobiao
    Hu, Sheng
    Faruque, Mohammad Omar
    Ahmad, Shakeel
    Yasin, Nasim Ahmad
    Khan, Waheed Ullah
    Ahmad, Aqeel
    Shikov, Alexander N.
    Chen, Jian
    Hu, Xuebo
    FRONTIERS IN PHARMACOLOGY, 2021, 12
  • [22] Genome Assembly and Annotation of the Medicinal Plant Calotropis gigantea, a Producer of Anticancer and Antimalarial Cardenolides
    Hoopes, Genevieve M.
    Hamilton, John P.
    Kim, Jeongwoon
    Zhao, Dongyan
    Wiegert-Rininger, Krystle
    Crisovan, Emily
    Buell, C. Robin
    G3-GENES GENOMES GENETICS, 2018, 8 (02): : 385 - 391
  • [23] Characterization of the complete chloroplast genome of Glycyrrhiza uralensis (Leguminosae), a traditional Chinese medicine
    Jia, Guolun
    Li, Peng
    Zhu, Qiang
    Peng, Li
    MITOCHONDRIAL DNA PART B-RESOURCES, 2019, 4 (02): : 3040 - 3041
  • [24] Transcriptomic resources for the medicinal legume Mucuna pruriens: de novo transcriptome assembly, annotation, identification and validation of EST-SSR markers
    Sathyanarayana, N.
    Pittala, Ranjith Kumar
    Tripathi, Pankaj Kumar
    Chopra, Ratan
    Singh, Heikham Russiachand
    Belamkar, Vikas
    Bhardwaj, Pardeep Kumar
    Doyle, Jeff J.
    Egan, Ashley N.
    BMC GENOMICS, 2017, 18
  • [25] First draft of the nuclear genome assembly and annotation of the multi-stress tolerant desert giant milkweed Calotropis procera
    Gaafar, Abdel-Rhman Z.
    Al-Qurainy, Fahad
    Khan, Salim
    Nadeem, Mohammad
    Tarroum, Mohamed
    Al-Hashimi, Abdulrahman
    SOUTH AFRICAN JOURNAL OF BOTANY, 2024, 166 : 442 - 454
  • [26] Reference-Guided Draft Genome Assembly, Annotation and SSR Mining Data of the Peruvian Creole Cattle (Bos taurus)
    Estrada, Richard
    Corredor, Flor-Anita
    Figueroa, Deyanira
    Salazar, Wilian
    Quilcate, Carlos
    Vasquez, Hector V.
    Maicelo, Jorge L.
    Gonzales, Jhony
    Arbizu, Carlos I.
    DATA, 2022, 7 (11)
  • [27] Primula vulgaris (primrose) genome assembly, annotation and gene expression, with comparative genomics on the heterostyly supergene
    Cocker, Jonathan M.
    Wright, Jonathan
    Li, Jinhong
    Swarbreck, David
    Dyer, Sarah
    Caccamo, Mario
    Gilmartin, Philip M.
    SCIENTIFIC REPORTS, 2018, 8
  • [28] A draft phased assembly of the diploid Cascade hop (Humulus lupulus) genome
    Padgitt-Cobb, Lillian K.
    Kingan, Sarah B.
    Wells, Jackson
    Elser, Justin
    Kronmiller, Brent
    Moore, Daniel
    Concepcion, Gregory
    Peluso, Paul
    Rank, David
    Jaiswal, Pankaj
    Henning, John
    Hendrix, David A.
    PLANT GENOME, 2021, 14 (01)
  • [29] A high-quality genome assembly and annotation of Quercus acutissima Carruth
    Liu, Dan
    Xie, Xiaoman
    Tong, Boqiang
    Zhou, Chengcheng
    Qu, Kai
    Guo, Haili
    Zhao, Zhiheng
    El-Kassaby, Yousry A.
    Li, Wei
    Li, Wenqing
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [30] Improved Genome Assembly and Annotation of the Soybean Aphid (Aphis glycines Matsumura)
    Mathers, Thomas C.
    G3-GENES GENOMES GENETICS, 2020, 10 (03): : 899 - 906