Identification of the ice-binding face of antifreeze protein from Tenebrio molitor

被引:63
|
作者
Marshall, CB
Daley, ME
Graham, LA
Sykes, BD
Davies, PL [1 ]
机构
[1] Queens Univ, Dept Biochem, Kingston, ON K7L 3N6, Canada
[2] Univ Alberta, Dept Biochem, Edmonton, AB T6G 2H7, Canada
来源
FEBS LETTERS | 2002年 / 529卷 / 2-3期
基金
加拿大健康研究院;
关键词
antifreeze protein; folding; insect; mutagenesis; NMR; thermal hysteresis;
D O I
10.1016/S0014-5793(02)03355-0
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The beetle Tenebrio molitor produces several isoforms of a highly disulfide-bonded beta-helical antifreeze protein with one surface comprised of an array of Thr residues that putatively interacts with ice. In order to use mutagenesis to identify the ice-binding face, we have selected an isoform that folds well and is tolerant of amino acid substitution, and have developed a heating test to monitor refolding. Three different types of steric mutations made to the putative ice-binding face reduced thermal hysteresis activity substantially while a steric mutation on an orthogonal surface had little effect. NMR spectra indicated that all mutations affected protein folding to a similar degree and demonstrated that most of the protein folded well. The large reductions in activity associated with steric mutations in the Thr array strongly suggest that this face of the protein is responsible for ice binding. (C) 2002 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:261 / 267
页数:7
相关论文
共 50 条
  • [1] Hydration Behavior at the Ice-Binding Surface of the Tenebrio molitor Antifreeze Protein
    Midya, Uday Sankar
    Bandyopadhyay, Sanjoy
    JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 118 (18): : 4743 - 4752
  • [2] Identification of the ice-binding face of a plant antifreeze protein
    Middleton, Adam J.
    Brown, Alan M.
    Davies, Peter L.
    Walker, Virginia K.
    FEBS LETTERS, 2009, 583 (04) : 815 - 819
  • [3] Elucidating the Sluggish Water Dynamics at the Ice-Binding Surface of the Hyperactive Tenebrio molitor Antifreeze Protein
    Midya, Uday Sankar
    Bandyopadhyay, Sanjoy
    JOURNAL OF PHYSICAL CHEMISTRY B, 2023, 127 (01): : 121 - 132
  • [4] New ice-binding face for type I antifreeze protein
    Baardsnes, J
    Kondejewski, LH
    Hodges, RS
    Chao, H
    Kay, C
    Davies, PL
    FEBS LETTERS, 1999, 463 (1-2) : 87 - 91
  • [5] Antifreeze protein from shorthorn sculpin: Identification of the ice-binding surface
    Baardsnes, J
    Jelokhani-Niaraki, M
    Kondejewski, LH
    Kuiper, MJ
    Kay, CM
    Hodges, RS
    Davies, PL
    PROTEIN SCIENCE, 2001, 10 (12) : 2566 - 2576
  • [6] Identification of the critical ice-binding residues in herring antifreeze protein
    Li, ZJ
    Lin, QS
    Hew, CL
    FASEB JOURNAL, 2002, 16 (04): : A550 - A550
  • [7] Tenebrio molitor antifreeze protein gene identification and regulation
    Qin, WS
    Walker, VK
    GENE, 2006, 367 : 142 - 149
  • [8] A random sequential adsorption model for the irreversible binding of Tenebrio molitor antifreeze protein to ice crystals
    Guo, Tinghe
    Zhang, Nan
    Li, Yannan
    Zhang, Luqiang
    Wang, Jun
    Zhang, Lirong
    Liu, Junjie
    AIP ADVANCES, 2024, 14 (06)
  • [10] ICE-BINDING STRUCTURE AND MECHANISM OF AN ANTIFREEZE PROTEIN FROM WINTER FLOUNDER
    SICHERI, F
    YANG, DSC
    NATURE, 1995, 375 (6530) : 427 - 431