Effect of Gas Diffusion Layer Surface Wettability Gradient on Water Behavior in a Serpentine Gas Flow Channel of Proton Exchange Membrane Fuel Cell

被引:3
|
作者
Malhotra, Sneha [1 ]
Gnash, Sumana [1 ]
机构
[1] IIT Roorkee, Dept Chem Engn, Roorkee 247667, Uttar Pradesh, India
关键词
wettability gradient; proton exchange fuel cell; droplet translation; contact angle; CFD; HYDROPHILIC/HYDROPHOBIC PROPERTIES; LIQUID-DROPS; CATHODE SIDE; TRANSPORT; MOTION; VISUALIZATION; MANIFOLDS; REMOVAL;
D O I
10.1115/1.4039520
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Water removal and behavior, in proton exchange membrane fuel cell (PEMFC) gas flow channel has been investigated in this work. Single serpentine gas flow channel has been simulated. Hydrodynamics of water drops in a serpentine channel are studied as a function of nature of gas diffusion layer (GDL) surface wettability. In one case, the surface becomes gradually hydrophobic starting from 90 deg to 170 deg. In this second case, the value of contact angle reduces to 10 deg. A three-dimensional model has been developed by using CFD software. Two different drop of diameter 0.2 mm and 0.4 mm are simulated for all the cases. It is observed that, water coverage is always lesser for a gradual hydrophobic surface. Also at low air velocity and gradual hydrophobic GDL surface results in lesser pressure drop as well as water coverage.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Effect of polytetrafluoroethylene distribution in the gas diffusion layer on water flooding in proton exchange membrane fuel cells
    Song, Wei
    Yu, Hongmei
    Shao, Zhigang
    Yi, Baolian
    Lin, Jin
    Liu, Na
    Chinese Journal of Catalysis, 2014, 35 (04): : 468 - 473
  • [42] Measurements of serpentine channel flow characteristics for a proton exchange membrane fuel cell
    Suga, K.
    Nishimura, W.
    Yamamoto, T.
    Kaneda, M.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (11) : 5942 - 5954
  • [43] Effect of carbon paper substrate of the gas diffusion layer on the performance of proton exchange membrane fuel cell
    Lin, J. F.
    Wertz, J.
    Ahmad, R.
    Thommes, M.
    Kannan, A. M.
    ELECTROCHIMICA ACTA, 2010, 55 (08) : 2746 - 2751
  • [44] Washing experiment of the gas diffusion layer in a proton-exchange membrane fuel cell
    Lin, Jui-Hsiang
    Chen, Wei-Hung
    Su, Shih-Hsuan
    Su, Yen-Ju
    Ko, Tse-Hao
    ENERGY & FUELS, 2008, 22 (04) : 2533 - 2538
  • [45] A review on gas diffusion layer in proton exchange membrane fuel cell: Materials and manufacturing
    Luo, Chuan Xu
    Choo, Hui Leng
    Ahmad, Hafisoh
    Sivasankaran, Praveena Nair
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2024, 238 (6-7) : 785 - 796
  • [46] A Super Uniform Hydrophobic Gas Diffusion Layer for a Proton Exchange Membrane Fuel Cell
    Xiao, Yan
    Li, Xiang
    Wang, Qianqian
    Yang, Yange
    Li, Bing
    Ming, Pingwen
    Zhang, Cunman
    Dai, Haifeng
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (31) : 38090 - 38099
  • [47] Effects of Gas Diffusion Layer Porosity Distribution on Proton Exchange Membrane Fuel Cell
    Yang, Penghui
    Wang, Yongqing
    Yang, Youchen
    Yuan, Lei
    Jin, Zunlong
    ENERGY TECHNOLOGY, 2021, 9 (07)
  • [48] Numerical study on the effect of microporous layer crack changes on water management in gas diffusion layer of proton exchange membrane fuel cell
    Yu, Yang
    Chen, Sheng
    Wei, Heng
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2023, 212
  • [49] The effect of different gas diffusion layer porosity on proton exchange membrane fuel cells
    Turkmen, Anil Can
    Celik, Cenk
    FUEL, 2018, 222 : 465 - 474
  • [50] Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells: A Review
    Guo, Hui
    Chen, Lubing
    Ismail, Sara Adeeba
    Jiang, Lulu
    Guo, Shihang
    Gu, Jie
    Zhang, Xiaorong
    Li, Yifeng
    Zhu, Yuwen
    Zhang, Zihan
    Han, Donglin
    MATERIALS, 2022, 15 (24)