Chemo-Enzymatic Synthesis and Characterization of Renewable Thermoplastic and Thermoset Isocyanate-Free Poly(hydroxy)urethanes from Ferulic Acid Derivatives

被引:57
作者
Menard, Raphael [1 ,2 ]
Caillol, Sylvain [2 ]
Allais, Florent [1 ,3 ]
机构
[1] CEBB, AgroParisTech, ABI, Chaire Agrobiotechnol Ind, 3 Rue Rouges Terres, F-51110 Pomacle, France
[2] ENSCM, UM, CNRS, Inst Charles Gerhardt,UMR 5253, 8 Rue Ecole Normale, F-34296 Montpellier, France
[3] Univ Paris Saclay, CNRS, INRA, AgroParisTech,UMR GMPA 782, Ave Lucien Bretignieres, F-78850 Thiverval Grignon, France
来源
ACS SUSTAINABLE CHEMISTRY & ENGINEERING | 2017年 / 5卷 / 02期
关键词
Chemo-enzymatic synthesis; Nonfeed product valorization; CO2; sequestration; Ferulic acid; Fully biobased NIPU; Thermosets and thermoplastics; Tunable material properties; 5-MEMBERED CYCLIC CARBONATE; THERMAL-PROPERTIES; MODEL REACTION; EPOXY-RESINS; CO2; FIXATION; POLYURETHANES; POLYHYDROXYURETHANES; POLYADDITION; POLYMERS; AMINES;
D O I
10.1021/acssuschemeng.6b02022
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study presents the syntheses and characterization of renewable nonisocyanate polyurethanes (NIPUs) from a new family of aromatic C-5-cyclocarbonate precursors with different functionalities obtained from nontoxic ferulic acid derivatives by glycidylation and carbonation under high carbon dioxide pressure. Depending on the functionality, linear NIPU chains (thermoplastics) or cross-linked NIPU networks (thermosets) have been obtained. The thermoplastic NIPUs molar masses were determined using SEC and H-1 NMR. The thermal and thermo-mechanical properties of the NIPUs were assessed by DSC, DMA (for thermosets), and TGA to determine the influence of the NIPU chemical structure on its properties. The range of T-g obtained (17-72 degrees C) was efficiently correlated with the degree of freedom and the molar mass of the NIPU repeat unit.
引用
收藏
页码:1446 / 1456
页数:11
相关论文
共 65 条
[1]   Cyclic limonene dicarbonate as a new monomer for non-isocyanate oligo- and polyurethanes (NIPU) based upon terpenes [J].
Baehr, Moritz ;
Bitto, Alexandro ;
Muelhaupt, Rolf .
GREEN CHEMISTRY, 2012, 14 (05) :1447-1454
[2]   Linseed and soybean oil-based polyurethanes prepared via the non-isocyanate route and catalytic carbon dioxide conversion [J].
Baehr, Moritz ;
Muelhaupt, Rolf .
GREEN CHEMISTRY, 2012, 14 (02) :483-489
[3]   Renewable polymers derived from ferulic acid and biobased diols via ADMET [J].
Barbara, Imane ;
Flourat, Amandine L. ;
Allais, Florent .
EUROPEAN POLYMER JOURNAL, 2015, 62 :236-243
[4]   *DAS DI-ISOCYANAT-POLYADDITIONSVERFAHREN (POLYURETHANE) [J].
BAYER, O .
ANGEWANDTE CHEMIE, 1947, 59 (09) :257-272
[5]   Optimization of the synthesis of polyhydroxyurethanes using dynamic rheometry [J].
Benyahya, Sofia ;
Boutevin, Bernard ;
Caillol, Sylvain ;
Lapinte, Vincent ;
Habas, Jean-Pierre .
POLYMER INTERNATIONAL, 2012, 61 (06) :918-925
[6]   Access to nonisocyanate poly(thio)urethanes: A comparative study [J].
Besse, Vincent ;
Foyer, Gabriel ;
Auvergne, Remi ;
Caillol, Sylvain ;
Boutevin, Bernard .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2013, 51 (15) :3284-3296
[7]   Solubility in CO2 and carbonation studies of epoxidized fatty acid diesters: towards novel precursors for polyurethane synthesis [J].
Boyer, Aurelie ;
Cloutet, Eric ;
Tassaing, Thierry ;
Gadenne, Benoit ;
Alfos, Carine ;
Cramail, Henri .
GREEN CHEMISTRY, 2010, 12 (12) :2205-2213
[8]   A bimetallic iron(III) catalyst for CO2/epoxide coupling [J].
Buchard, Antoine ;
Kember, Michael R. ;
Sandeman, Karl G. ;
Williams, Charlotte K. .
CHEMICAL COMMUNICATIONS, 2011, 47 (01) :212-214
[9]   Solvent- and catalyst-free synthesis of fully biobased nonisocyanate polyurethanes with different macromolecular architectures [J].
Carre, C. ;
Bonnet, L. ;
Averous, L. .
RSC ADVANCES, 2015, 5 (121) :100390-100400
[10]   Original biobased nonisocyanate polyurethanes: solvent- and catalyst-free synthesis, thermal properties and rheological behaviour [J].
Carre, Camille ;
Bonnet, Lara ;
Averous, Luc .
RSC ADVANCES, 2014, 4 (96) :54018-54025