Freestanding Sodium Vanadate/Carbon Nanotube Composite Cathodes with Excellent Structural Stability and High Rate Capability for Sodium-Ion Batteries

被引:36
|
作者
Osman, Sahar [1 ]
Zuo, Shiyong [1 ]
Xu, Xijun [1 ]
Shen, Jiadong [1 ]
Liu, Zhengbo [1 ]
Li, Fangkun [1 ]
Li, Peihang [1 ]
Wang, Xinyi [1 ]
Liu, Jun [1 ]
机构
[1] South China Univ Technol, Sch Mat Sci & Engn, Guangdong Prov Key Lab Adv Energy Storage Mat, Guangzhou 510641, Peoples R China
基金
中国国家自然科学基金;
关键词
sodium-ion battery; NaV6O15; carbon nanotube; freestanding; 3D tunnel structure; pseudocapacitive; ENERGY-STORAGE; HIGH-CAPACITY; NAV6O15; NANORODS; LITHIUM; PERFORMANCE; CHALLENGES; LI; BETA-NA0.33V2O5; VOLTAGE; CARBON;
D O I
10.1021/acsami.0c21328
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Sodium vanadate NaV6O15 (NVO) is one of the most promising cathode materials for sodium-ion batteries because of its low cost and high theoretical capacity. Nevertheless, NVO suffers from fast capacity fading and poor rate capability. Herein, a novel free-standing NVO/multiwalled carbon nanotube (MWCNT) composite film cathode was synthesized and designed by a simple hydrothermal method followed by a dispersion technique with high safety and low cost. The kinetics analysis based on cyclic voltammetry measurements reveals that the intimate integration of the MWCNT 3D porous conductive network with the 3D pillaring tunnel structure of NVO nanorods enhances the Na+ intercalation pseudocapacitive behavior, thus leading to exceptional rate capability and long lifespan. Furthermore, the NVO/MWCNT composite exhibits excellent structural stability during the charge/discharge process. With these benefits, the composite delivers a high discharge capacity of 217.2 mA h g(-1) at 0.1 A g(-1) in a potential region of 1.5-4.0 V. It demonstrates a superior rate capability of 123.7 mA h g(-1) at 10 A More encouragingly, it displays long lifespan; impressively, 96% of the initial capacity is retained at 5 A g(-1) for over 500 cycles. Our work presents a promising strategy for developing electrode materials with a high rate capability and a long cycle life.
引用
收藏
页码:816 / 826
页数:11
相关论文
共 50 条
  • [41] Bismuth Nanoparticle@Carbon Composite Anodes for Ultralong Cycle Life and High-Rate Sodium-Ion Batteries
    Xiong, Peixun
    Bai, Panxing
    Li, Ang
    Li, Benfang
    Cheng, Mingren
    Chen, Yiping
    Huang, Shuping
    Iang, Qiang
    Bu, Xian-He
    Xu, Yunhua
    ADVANCED MATERIALS, 2019, 31 (48)
  • [42] Monodispersed SnS nanoparticles anchored on carbon nanotubes for high-retention sodium-ion batteries
    Luu, Thi Hoai Thuong
    Duong, Dinh Loc
    Lee, Tae Hoon
    Pham, Duy Tho
    Sahoo, Ramkrishna
    Han, Gyeongtak
    Kim, Young-Min
    Lee, Young Hee
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (16) : 7861 - 7869
  • [43] 2D Covalent Organic Framework Covalently Anchored with Carbon Nanotube as High-Performance Cathodes for Lithium and Sodium-Ion Batteries
    Biswas, Sandip
    Pramanik, Atin
    Dey, Anupam
    Chattopadhyay, Shreyasi
    Pieshkov, Tymofii S.
    Bhattacharyya, Sohini
    Ajayan, Pulickel M.
    Maji, Tapas Kumar
    SMALL, 2024, 20 (48)
  • [44] Toward the High-Voltage Stability of Layered Oxide Cathodes for Sodium-Ion Batteries: Challenges, Progress, and Perspectives
    Chen, Zhigao
    Deng, Yuyu
    Kong, Ji
    Fu, Weibin
    Liu, Chenyang
    Jin, Ting
    Jiao, Lifang
    ADVANCED MATERIALS, 2024, 36 (26)
  • [45] Bamboo-like carbon nanotube-carbon nanotube for high-performance sodium-ion batteries
    Tong, Z. W.
    Yuan, Y. F.
    Yin, S. M.
    Wang, B. X.
    Guo, S. Y.
    Mo, C. L.
    MATERIALS LETTERS, 2022, 311
  • [46] High-Entropy Layered Oxide Cathodes for Sodium-Ion Batteries
    Zhao, Chenglong
    Ding, Feixiang
    Lu, Yaxiang
    Chen, Liquan
    Hu, Yong-Sheng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (01) : 264 - 269
  • [47] Selenium@Hollow mesoporous carbon composites for high-rate and long-cycling lithium/sodium-ion batteries
    Xue, Pan
    Zhai, Yanjun
    Wang, Nana
    Zhang, Yaohui
    Lu, Zhenxiao
    Liu, Yuanlin
    Bai, Zhongchao
    Han, Baokun
    Zou, Guifu
    Dou, Shixue
    CHEMICAL ENGINEERING JOURNAL, 2020, 392
  • [48] A Multi-Ion Strategy towards Rechargeable Sodium-Ion Full Batteries with High Working Voltage and Rate Capability
    Jiang, Chunlei
    Fang, Yue
    Zhang, Wenyong
    Song, Xiaohe
    Lang, Jihui
    Shi, Lei
    Tang, Yongbing
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (50) : 16370 - 16374
  • [49] Carbon embedded SnSb composite tailored by carbothermal reduction process as high performance anode for sodium-ion batteries
    Choi, Jeong-Hee
    Ha, Chung-Wan
    Choi, Hae-Young
    Lee, Sang-Min
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2018, 60 : 451 - 457
  • [50] The Progress of Hard Carbon as an Anode Material in Sodium-Ion Batteries
    Tan, Suchong
    Yang, Han
    Zhang, Zhen
    Xu, Xiangyu
    Xu, Yuanyuan
    Zhou, Jian
    Zhou, Xinchi
    Pan, Zhengdao
    Rao, Xingyou
    Gu, Yudong
    Wang, Zhoulu
    Wu, Yutong
    Liu, Xiang
    Zhang, Yi
    MOLECULES, 2023, 28 (07):