Regularity results for non-autonomous variational integrals with discontinuous coefficients
被引:24
|
作者:
di Napoli, Antonia Passarelli
论文数: 0引用数: 0
h-index: 0
机构:
Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, ItalyUniv Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
di Napoli, Antonia Passarelli
[1
]
机构:
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
We investigate the regularity properties of local minimizers of non autonomous convex integral functionals of the type F(u; Omega) := integral(Omega) f(x,Du)dx, with p-growth into the gradient variable and discontinuous dependence on the x variable. We prove a higher differentiability result for local minimizers of the functional. F(u; Omega) assuming that the function that measures the oscillation of the integrand with respect to the x variable belongs to a suitable Sobolev space.
机构:
Univ Naples Federico II, Dipartimento Matemat Applicaz R Caccioppoli, I-80126 Naples, ItalyUniv Naples Federico II, Dipartimento Matemat Applicaz R Caccioppoli, I-80126 Naples, Italy
De Maria, Bruno
di Napoli, Antonia Passarelli
论文数: 0引用数: 0
h-index: 0
机构:
Univ Naples Federico II, Dipartimento Matemat Applicaz R Caccioppoli, I-80126 Naples, ItalyUniv Naples Federico II, Dipartimento Matemat Applicaz R Caccioppoli, I-80126 Naples, Italy