Effects of nitromethane addition on the laminar burning velocity and ignition delay of syngas/air flames

被引:4
|
作者
Bhattacharya, Atmadeep [1 ]
Datta, Amitava [1 ]
机构
[1] Jadavpur Univ, Dept Power Engn, Salt Lake Campus, Kolkata 700098, India
关键词
Laminar burning velocity; ignition delay; syngas; nitromethane; blend; AIR FLAMES; ELEVATED PRESSURES; GASOLINE-ENGINE; GAS-ENGINE; COMBUSTION; MIXTURES; HYDROGEN; METHANE; SPEEDS; FUEL;
D O I
10.1080/00102202.2018.1448802
中图分类号
O414.1 [热力学];
学科分类号
摘要
Nitromethane can be blended with syngas to improve the volumetric energy content of the fuel. The effects of blending nitromethane in different proportions to syngas on the laminar burning velocity and ignition delay time of the fuel/air mixture have been studied. The syngas is assumed to be an equimolecular mixture of H-2 and CO. A novel reaction mechanism containing 167 species and 1220 reactions has been developed and validated against the state-of-the-art experimental data in order to simulate the syngas/nitromethane/air flame. It has been found that the blending of nitromethane with syngas fuel reduces the laminar burning velocity due to the reductions in thermal diffusivity of the reactant mixture and the concentrations of the active radicals, such as H and OH, in the flame zone. The effect of nitromethane addition in the fuel on the formation and emission of NO has also been analyzed. The ignition delay of the fuel/air mixture also reduces when nitromethane is blended with syngas. Some key reaction steps for the combustion of the syngas/nitromethane/air mixture have been identified through sensitivity analysis.
引用
收藏
页码:1283 / 1301
页数:19
相关论文
共 50 条
  • [31] Effect of CO content on laminar burning velocities of syngas-air premixed flames at elevated temperatures
    Varghese, Robin John
    Kolekar, Harshal
    Hariharan, Vishnu
    Kumar, Sudarshan
    FUEL, 2018, 214 : 144 - 153
  • [32] Effects of hydrogen addition and nitrogen dilution on the laminar flame characteristics of premixed methane-air flames
    Tahtouh, T.
    Halter, F.
    Samson, E.
    Mounaim-Rousselle, C.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (19) : 8329 - 8338
  • [33] Experimental laminar burning velocity of syngas from fixed-bed downdraft biomass gasifiers
    Oliveira, Guthman Palandi
    Sbampato, Maria Esther
    Martins, Cristiane Aparecida
    Santos, Leila Ribeiro
    Barreta, Luiz Gilberto
    Boschi Goncalves, Rene Francisco
    RENEWABLE ENERGY, 2020, 153 : 1251 - 1260
  • [34] Effect of hydrogen addition on the laminar burning velocity and the flame stability of n-dodecane reacting with air at elevated pressures
    Rajesh, Natarajan
    Prathap, Chockalingam
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 49 : 193 - 207
  • [35] Experimental and kinetic modeling study of the laminar burning velocity of NH3/DME/air premixed flames
    Xiao, Huahua
    Li, Huizhen
    COMBUSTION AND FLAME, 2022, 245
  • [36] Experimental measurements of laminar burning velocity of premixed propane-air flames at higher pressure and temperature conditions
    Shinde, Vijay
    Fulzele, Amardeep
    Kumar, Sudarshan
    FUEL, 2024, 356
  • [37] Laminar burning velocity of acetic acid plus air flames
    Christensen, Moah
    Konnov, Alexander A.
    COMBUSTION AND FLAME, 2016, 170 : 12 - 29
  • [38] Effects of Stretch and Preferential Diffusion in Laminar Syngas Premixed Flames
    Aggarwal, Suresh
    JOURNAL OF ENERGY ENGINEERING, 2017, 143 (05)
  • [39] Numerical Study on Laminar Burning Velocity and Flame Stability of Premixed Methane/Ethylene/Air Flames
    Chen Shanshan
    Jiang Yong
    Qiu Rong
    An Jiangtao
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2012, 20 (05) : 914 - 922
  • [40] Investigation of the influence of DMMP on the laminar burning velocity of methane/air premixed flames
    Li, Wei
    Jiang, Yong
    Jin, Yi
    Zhu, Xianli
    FUEL, 2019, 235 : 1294 - 1300