Effects of nitromethane addition on the laminar burning velocity and ignition delay of syngas/air flames

被引:4
|
作者
Bhattacharya, Atmadeep [1 ]
Datta, Amitava [1 ]
机构
[1] Jadavpur Univ, Dept Power Engn, Salt Lake Campus, Kolkata 700098, India
关键词
Laminar burning velocity; ignition delay; syngas; nitromethane; blend; AIR FLAMES; ELEVATED PRESSURES; GASOLINE-ENGINE; GAS-ENGINE; COMBUSTION; MIXTURES; HYDROGEN; METHANE; SPEEDS; FUEL;
D O I
10.1080/00102202.2018.1448802
中图分类号
O414.1 [热力学];
学科分类号
摘要
Nitromethane can be blended with syngas to improve the volumetric energy content of the fuel. The effects of blending nitromethane in different proportions to syngas on the laminar burning velocity and ignition delay time of the fuel/air mixture have been studied. The syngas is assumed to be an equimolecular mixture of H-2 and CO. A novel reaction mechanism containing 167 species and 1220 reactions has been developed and validated against the state-of-the-art experimental data in order to simulate the syngas/nitromethane/air flame. It has been found that the blending of nitromethane with syngas fuel reduces the laminar burning velocity due to the reductions in thermal diffusivity of the reactant mixture and the concentrations of the active radicals, such as H and OH, in the flame zone. The effect of nitromethane addition in the fuel on the formation and emission of NO has also been analyzed. The ignition delay of the fuel/air mixture also reduces when nitromethane is blended with syngas. Some key reaction steps for the combustion of the syngas/nitromethane/air mixture have been identified through sensitivity analysis.
引用
收藏
页码:1283 / 1301
页数:19
相关论文
共 50 条
  • [1] Laminar burning velocity and ignition delay time for premixed isooctane-air flames with syngas addition
    Bhattacharya, Atmadeep
    Datta, Amitava
    Wensing, Michael
    COMBUSTION THEORY AND MODELLING, 2017, 21 (02) : 228 - 247
  • [2] Laminar burning velocity of nitromethane plus air flames: A comparison of flat and spherical flames
    Naucler, Jenny D.
    Nilsson, Elna J. K.
    Konnov, Alexander A.
    COMBUSTION AND FLAME, 2015, 162 (10) : 3803 - 3809
  • [3] Thermal and Chemical Effects of Water Addition on Laminar Burning Velocity of Syngas
    Xie, Yongliang
    Wang, Jinhua
    Xu, Nan
    Yu, Senbin
    Zhang, Meng
    Huang, Zuohua
    ENERGY & FUELS, 2014, 28 (05) : 3391 - 3398
  • [4] Investigation on dilution effect on laminar burning velocity of syngas premixed flames
    Li, Hong-Meng
    Li, Guo-Xiu
    Sun, Zuo-Yu
    Zhou, Zi-Hang
    Li, Yuan
    Yuan, Ye
    ENERGY, 2016, 112 : 146 - 152
  • [5] EFFECTS OF METHANE ADDITION ON THE LAMINAR BURNING VELOCITY AND MARKSTEIN LENGTH OF METHANOL/AIR PREMIXED FLAME
    Shen, Haiqing
    Liao, Huihong
    Wang, Qiyang
    Xu, Cangsu
    Liu, Kai
    Zhou, Wenhua
    THERMAL SCIENCE, 2024, 28 (02): : 987 - 996
  • [6] EFFECTS OF METHANE ADDITION ON THE LAMINAR BURNING VELOCITY AND MARKSTEIN LENGTH OF METHANOL/AIR PREMIXED FLAME
    Shen, Haiqing
    Liao, Huihong
    Wang, Qiyang
    Xu, Cangsu
    Liu, Kai
    Zhou, Wenhua
    THERMAL SCIENCE, 2024, 28 (2A): : 987 - 996
  • [7] Effects of water vapor addition on the laminar burning velocity of oxygen-enriched methane flames
    Mazas, A. N.
    Fiorina, B.
    Lacoste, D. A.
    Schuller, T.
    COMBUSTION AND FLAME, 2011, 158 (12) : 2428 - 2440
  • [8] Numerical study on laminar burning velocity and ignition delay time of ammonia flame with hydrogen addition
    Li, Jun
    Huang, Hongyu
    Kobayashi, Noriyuki
    Wang, Chenguang
    Yuan, Haoran
    ENERGY, 2017, 126 : 796 - 809
  • [9] Impact of Syngas Addition to Methane on Laminar Burning Velocity
    Morovatiyan, Mohammadrasool
    Shahsavan, Martia
    Baghirzade, Mammadbaghir
    Mack, J. Hunter
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2021, 143 (05):
  • [10] Laminar burning velocity with oxygen-enriched air of syngas produced from biomass gasification
    Yepes, Hernando A.
    Amell, Andres A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (18) : 7519 - 7527