Uniform difference method for singularly perturbed Volterra integro-differential equations

被引:33
作者
Amiraliyev, G. M. [1 ]
Sevgin, Sebaheddin [1 ]
机构
[1] Yuzuncu Yil Univ, Fac Art & Sci, Dept Math, TR-65080 Van, Turkey
关键词
singular perturbation; Volterra integro-differential equations; difference scheme; uniform convergence; boundary layer;
D O I
10.1016/j.amc.2005.11.155
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Singularly perturbed Volterra integro-differential equations is considered. An exponentially fitted difference scheme is constructed in a uniform mesh which gives first order uniform convergence in the discrete maximum norm. Numerical experiments support the theoretical results. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:731 / 741
页数:11
相关论文
共 19 条
[1]  
AMIRALIYEV G, 2004, J APPL MATH, V3, P191
[2]  
Amiraliyev G. M., 1995, Turk. J. Math, V19, P207
[3]  
Amiraliyev GM, 2003, COMPUT MATH APPL, V46, P695, DOI [10.1016/S0898-1221(03)90135-0, 10.1016/S0898-1221(03)00278-5]
[4]   A uniformly convergent finite difference method for a singularly perturbed initial value problem [J].
Amiraliyev, GM ;
Duru, H .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 1999, 20 (04) :379-387
[5]   SINGULARLY PERTURBED VOLTERRA INTEGRAL-EQUATIONS [J].
ANGELL, JS ;
OLMSTEAD, WE .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1987, 47 (01) :1-14
[6]   SINGULARLY PERTURBED VOLTERRA INTEGRAL-EQUATIONS .1. [J].
ANGELL, JS ;
OLMSTEAD, WE .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1987, 47 (06) :1150-1162
[7]  
ANGELL JS, 1985, J APPL MATH PHYS, V36, P487
[8]  
[Anonymous], 2000, ROBUST COMPUTATIONAL
[9]  
Doolan E.P., 1980, Uniform Numerical Methods for Problems with Initial and Boundary Layers
[10]   Tension spline collocation methods for singularly perturbed Volterra integro-differential and Volterra integral equations [J].
Horvat, V ;
Rogina, M .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 140 (1-2) :381-402