Techno-economic analysis of four concepts for thermal decomposition of methane: Reduction of CO2 emissions in natural gas combustion

被引:61
作者
Keipi, Tiina [1 ]
Hankalin, Ville [2 ]
Nummelin, Jaakko [2 ]
Raiko, Risto [1 ]
机构
[1] Tampere Univ Technol, Dept Chem & Bioengn, POB 541, Tampere 33101, Finland
[2] AF Consult, Bertel Jungin Aukio 9, Espoo 02600, Finland
关键词
Carbon capture; Natural gas; Carbon black; Methane decomposition; Techno-economic analysis; Carbon dioxide; COMBINED-CYCLE; HYDROGEN; HYDROCARBON; CAPTURE; LEAKAGE; CARBON;
D O I
10.1016/j.enconman.2015.11.057
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper presents a techno-economic analysis of four concepts that apply the thermal decomposition of methane (TDM) with the aim of reducing carbon dioxide emissions in natural gas combustion. Different technical solutions are applied to convert methane in natural gas to gaseous hydrogen, which is corn busted to produce electricity with a steam power cycle, and solid carbon, which is assumed to be sold as carbon black. The cost of electricity production and the potential to reduce CO2 emissions in each concept were evaluated and compared to the reference case of direct methane combustion. With a moderate emission allowance price (20 epsilon/t(CO2)) and product carbon price (500 epsilon/t(carbon)) the cost of electricity production in the concepts was 12-58% higher than in the reference case. However, the price of product carbon had a significant effect on the feasibility of the concepts. Thus, the methane burner, which showed the best performance, produced 17% less CO2 emissions per MWhe and had a smaller cost of electricity production than the reference case already with the carbon price of 600-700 epsilon t(carbon). (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 41 条
[1]   Hydrogen production by methane decomposition: A review [J].
Abbas, Hazzim F. ;
Daud, W. M. A. Wan .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (03) :1160-1190
[2]   Review of methane catalytic cracking for hydrogen production [J].
Amin, Ashraf M. ;
Croiset, Eric ;
Epling, William .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (04) :2904-2935
[3]  
[Anonymous], CARB BLACK PRIC
[4]  
[Anonymous], 2009, Carbon Capture and Storage
[5]  
[Anonymous], 2015, 2030 EN STRAT
[6]  
[Anonymous], 2014, WORLD EN OUTL 2014
[7]  
[Anonymous], ELECT J
[8]   Effects of experimental CO2 leakage on solubility and transport of seven trace metals in seawater and sediment [J].
Ardelan, Murat V. ;
Steinnes, Eiliv ;
Lierhagen, Syverin ;
Linde, Sven Ove .
SCIENCE OF THE TOTAL ENVIRONMENT, 2009, 407 (24) :6255-6266
[9]   Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane - A review [J].
Ashik, U. P. M. ;
Daud, W. M. A. Wan ;
Abbas, Hazzim F. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 44 :221-256
[10]  
Blackford J, 2013, WOODHEAD PUBL SER EN, P149, DOI 10.1533/9780857097279.2.149