Electrodeposition of crystalline Si in molten alkali metal fluoride-chloride mixtures: Comparative study of Li, Na, K, and Cs systems

被引:3
作者
Norikawa, Yutaro [1 ]
Kondo, Airi [1 ]
Yasuda, Kouji [2 ,3 ,4 ]
Nohira, Toshiyuki [1 ]
机构
[1] Kyoto Univ, Inst Adv Energy, Uji, Kyoto 6110011, Japan
[2] Kyoto Univ, Agcy Hlth Safety & Environm, Yoshida Hommachi,Sakyo Ku, Kyoto 6068501, Japan
[3] Kyoto Univ, Grad Sch Energy Sci, Yoshida Hommachi,Sakyo Ku, Kyoto 6068501, Japan
[4] Kyoto Univ, Grad Sch Engn, Yoshida Hommachi,Sakyo Ku, Kyoto 6068501, Japan
基金
日本学术振兴会;
关键词
Silicon; Molten salt; Electrochemical behavior; Electrodeposition; Fluoride-chloride mixture; SILICON ELECTRODEPOSITION; FILMS; GROWTH; REDUCTION; IONS;
D O I
10.1016/j.electacta.2022.141255
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A comparative study was conducted on the electrodeposition of Si using molten salts of AF-ACl-A2SiF6 (A = Li, Na, K, Cs, AF-ACl = 50:50 mol%) at 1073 K. Cyclic voltammetry revealed that the electrodeposition potential of Si was negative in the order of Na > K > Cs systems with reference to Cl2/Cl-, and almost the same as with reference to F2/F-. In the Li system, no cathodic current peak was observed, owing to the formation of the Li-Si alloy. In the Na and Li systems, the cathodic peak current density decreased with time owing to the decompo-sition of SiF62-ions. The differences in the Si electrodeposition and thermal stability of SiF62-ions can be explained by the interactions of alkaline cations and F- ions; smaller cations interact more strongly with F-, resulting in the reduced thermal stability of SiF62-. Electrodeposited Si was confirmed to be crystalline by XRD, and its morphology was film-like in the K and Cs systems, and whisker-like in the Na system. A difference in nucleation and growth was observed between the K and Na systems, which explains the difference in the morphology of the Si deposits.
引用
收藏
页数:11
相关论文
共 37 条
[1]  
Andriiko AA, 1997, RUSS J ELECTROCHEM+, V33, P1343
[2]  
Bard A.J., 2001, Electrochemical Methods: Fundamentals and Applications
[3]   Silicon electrodeposition in molten fluorides [J].
Bieber, A. L. ;
Massot, L. ;
Gibilaro, M. ;
Cassayre, L. ;
Taxi, P. ;
Chamelot, P. .
ELECTROCHIMICA ACTA, 2012, 62 :282-289
[4]   Fluoroacidity evaluation in molten salts [J].
Bieber, A. L. ;
Massot, L. ;
Gibilaro, M. ;
Cassayre, L. ;
Chamelot, P. ;
Taxil, P. .
ELECTROCHIMICA ACTA, 2011, 56 (14) :5022-5027
[5]   THE ELECTRODEPOSITION OF SILICON IN FLUORIDE MELTS [J].
BOEN, R ;
BOUTEILLON, J .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1983, 13 (03) :277-288
[6]  
CHASE MW, 1985, J PHYS CHEM REF DATA, V14, P1
[7]   SILICON EPITAXIAL-GROWTH BY ELECTRODEPOSITION FROM MOLTEN FLUORIDES [J].
COHEN, U ;
HUGGINS, RA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1976, 123 (03) :381-383
[8]  
Devyatkin S.V., 2003, Journal of Mining and Metallurgy, Section B: Metallurgy, V39, P303, DOI [10.2298/JMMB0302303D, DOI 10.2298/JMMB0302303D]
[9]   ELECTRODEPOSITION OF SOLAR SILICON [J].
ELWELL, D ;
FEIGELSON, RS .
SOLAR ENERGY MATERIALS, 1982, 6 (02) :123-145
[10]   Electrodeposition of silicon from fluoride melts [J].
Haarberg, Geir Martin ;
Famiyeh, Lord ;
Martinez, Ana Maria ;
Osen, Karen S. .
ELECTROCHIMICA ACTA, 2013, 100 :226-228