The influence of nozzle diameter on the circular hydraulic jump of liquid jet impingement

被引:30
|
作者
Choo, Kyosung [1 ]
Kim, Sung Jin [2 ]
机构
[1] Youngstown State Univ, Dept Mech & Ind Engn, Youngstown, OH 44555 USA
[2] Korea Adv Inst Sci & Technol, Sch Mech Aerosp & Syst Engn, Taejon 305701, South Korea
基金
新加坡国家研究基金会;
关键词
Hydraulic jump; Impinging jet; Impingement; Microscale; LOCAL HEAT-TRANSFER; HORIZONTAL PLATE; RADIAL SPREAD; FREE-SURFACE; EXCHANGER; MODEL; COST; SINK; FLOW;
D O I
10.1016/j.expthermflusci.2015.10.033
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this study, the circular hydraulic jump of jet impingement cooling was experimentally investigated using water as the test fluid. The effects of nozzle diameter (0.381, 0.506, 1, 2, 3.9, 6.7, 8 mm) on the hydraulic jump radius were considered. The results indicate that the dimensionless hydraulic jump radius (r(hj)/d) is independent of the nozzle diameter under fixed impingement power conditions, while the dimensionless hydraulic jump radius increases with decreasing nozzle diameter under fixed jet Reynolds number conditions. Based on the experimental results, a new correlation for the hydraulic jump radius is proposed as a function of the impingement power alone. It is shown that the proposed empirical correlation for the dimensionless hydraulic jump radius has the same form as that derived from a dimensional analysis of the conservation equations. In addition, the results clearly show that the dimensionless hydraulic jump radius depends on two dimensionless groups, jet Reynolds and Froude numbers, rather than just one, jet Reynolds number. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:12 / 17
页数:6
相关论文
共 50 条
  • [31] Experimental and numerical study of inclined free surface liquid jet impingement
    Baghel, Kuldeep
    Sridharan, Arunkumar
    Murallidharan, Janani Srree
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2020, 154
  • [32] The hydraulic jump in liquid helium
    Rolley, Etienne
    Guthmann, Claude
    Pettersen, Michael S.
    Chevallier, Christophe
    LOW TEMPERATURE PHYSICS, PTS A AND B, 2006, 850 : 141 - +
  • [33] Dynamics of the impingement region of a circular turbulent jet
    Frosell, T.
    Fripp, M.
    Gutmark, E.
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2018, 91 : 399 - 409
  • [34] Heat transfer of confined circular jet impingement
    Hsieh, SS
    Huang, JT
    Tsai, HH
    CHINESE JOURNAL OF MECHANICS-SERIES A, 2001, 17 (01): : 29 - 38
  • [35] Computational Analysis of Liquid Jet Impingement Microchannel Cooling
    Zunaid, M.
    Cho, Haeng Muk
    Husain, Afzal
    Jindal, Anant
    Kumar, Rohit
    Chauhan, Bhupendra Singh
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (14) : 27877 - 27883
  • [36] Orthogonal liquid-jet impingement on wettability-patterned impermeable substrates
    Sen, Uddalok
    Chatterjee, Souvick
    Crockett, Julie
    Ganguly, Ranjan
    Yu, Lisha
    Megaridis, Constantine M.
    PHYSICAL REVIEW FLUIDS, 2019, 4 (01)
  • [37] Experimental study on heat transfer of jet impingement with a moving nozzle
    Ai, X.
    Xu, Z. G.
    Zhao, C. Y.
    APPLIED THERMAL ENGINEERING, 2017, 115 : 682 - 691
  • [38] Influence of inclined unconfined circular air jet impingement on local heat transfer characteristics of smooth flat plate
    Talapati, R. J.
    Baghel, Kuldeep
    Shrigondekar, Harshad
    Katti, V. V.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2024, 197
  • [39] Influence of Micro-scale Aspects and Jet-to-jet Interaction on Free-surface Liquid Jet Impingement for Micro-jet Array Cooling
    Haustein, H. D.
    Joerg, J.
    Rohlfs, W.
    Kneer, R.
    2014 IEEE INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS (ITHERM), 2014, : 904 - 911
  • [40] Tunneling of the blocked wave in a circular hydraulic jump
    Bhattacharjee, Jayanta K.
    PHYSICS LETTERS A, 2017, 381 (07) : 733 - 736